首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The 0.83ZnAl2O4-0.17TiO2 (ZAT) ceramics were synthesized by solid state ceramic route. The effect of 27B2O3-35Bi2O3-6SiO2-32ZnO (BBSZ) glass on the microwave dielectric properties of ZAT was investigated. The crystal structure and the microstructure of the ceramic-glass composites were studied by X-ray diffraction and scanning electron microscopic techniques. The low frequency dielectric loss was measured at 1 MHz. The dielectric properties of the sintered samples were measured in the microwave frequency range by the resonance method. Addition of 0.2 wt% of BBSZ improved the dielectric properties with quality factor (Qu × f) > 120,000 GHz, temperature coefficient of resonant frequency (τf) = −7.3 ppm/°C and dielectric constant (?r) = 11.7. Addition of 10 wt% of BBSZ lowered the sintering temperature to about 950 °C with Qu × f > 10,000 GHz, ?r = 10 and τf = −23 ppm/°C. The reactivity of 10 wt% BBSZ added ZAT with silver was also studied. The results show that ZAT doped with suitable amount of BBSZ glass is a possible material for low-temperature co-fired ceramic (LTCC) application.  相似文献   

2.
The microwave dielectric properties and the microstructures of the (1−x)MgTiO3-xCaTiO3 ceramic system were investigated. With partial replacement of Mg by Co, dielectric properties of the (1−x)(Mg0.95Co0.05)TiO3-xCaTiO3 ceramics can be promoted. The microwave dielectric properties are strongly correlated with the sintering temperature. At 1275°C, the 0.95(Mg0.95Co0.05)TiO3-0.05CaTiO3 ceramics possesses excellent microwave dielectric properties: a dielectric constant εr of 20.3, a Q×f value of 107 000 ( at 7 GHz) and a τf value of −22.8 ppm/°C. By appropriately adjusting the x value in the (1−x)(Mg0.95Co0.05)TiO3-xCaTiO3 ceramic system, zero τf value can be achieved. With x=0.07, a dielectric constant εγ of 21.6, a Q×f value of 92 000 (at 7 GHz) and a τf value of −1.8 ppm/°C was obtained for 0.93(Mg0.95Co0.05)TiO3-0.07CaTiO3 ceramics sintered at 1275°C for 4 h.  相似文献   

3.
The microstructures and the microwave dielectric properties of the (1 − x)Mg4Nb2O9-xCaTiO3 ceramic system were investigated. In order to achieve a temperature-stable material, CaTiO3 (τf ∼ 800 ppm/°C) was chosen as a τf compensator and added to Mg4Nb2O9 (τf ∼ −70 ppm/°C) to form a two phase system. It was confirmed by the XRD and EDX analysis. By appropriately adjusting the x-value in the (1 − x)Mg4Nb2O9-xCaTiO3 ceramic system, near-zero τf value can be achieved. A new microwave dielectric material, 0.5Mg4Nb2O9-0.5CaTiO3 applicable in microwave devices is suggested and possesses the dielectric properties of a dielectric constant ?r ∼ 24.8, a Q × f value ∼82,000 GHz (measured at 9.1 GHz) and a τf value ∼−0.3 ppm/°C.  相似文献   

4.
Alkaline earth orthosilicates M2SiO4 (M=Ba, Sr, Ca) ceramics were prepared by solid state ceramic route and their microwave dielectric properties were investigated. M2SiO4 ceramics have εr in the range 8.5-13. At microwave frequencies, the Qu × f obtained were 17,900 GHz, 19,100 GHz and 26,100 GHz for Ba2SiO4, Sr2SiO4 and Ca2SiO4 respectively. The τf of Ba2SiO4 was − 17 ppm/°C, whereas Sr2SiO4 and Ca2SiO4 exhibited high values of τf, − 205 ppm/°C and − 89 ppm/°C respectively. The coefficient of thermal expansion (αl) of the orthosilicates was also studied.  相似文献   

5.
Li2TiO3 ceramics were prepared at the sintering temperatures from 1050 to 1250 °C. The optimal microwave dielectric properties were ?r = 23.29, Q × f = 15,525 GHz (5.9 GHz), and τf = 35.05 ppm/ °C for the sample sintered at 1200 °C. The microwave dielectric properties were improved obviously when the Li2TiO3 ceramics were sintered at low temperatures with small additions of H3BO3 (B2O3 in the form of H3BO3). Only monoclinic Li2TiO3 was found in the pure or H3BO3-doped Li2TiO3 ceramics. About 1.0 wt.% H3BO3 addition aided the sintering of Li2TiO3 ceramics effectively while excessive H3BO3 (≥2.5 wt.%) was not favorable. Typically the best microwave dielectric properties were ?r = 23.28, Q × f = 37,110 GHz (6.3 GHz), and τf = 30.43 ppm/ °C for the 1.0 wt.% H3BO3-doped Li2TiO3 ceramic sintered at 920 for 3 h, which is promising for LTCC applications.  相似文献   

6.
The effects of B2O3 addition, as a sintering agent, on the sintering behavior, microstructure and microwave dielectric properties of the 11Li2O-3Nb2O5-12TiO2 (LNT) ceramics have been investigated. With the low-level doping of B2O3 (≤2 wt.%), the sintering temperature of the LNT ceramic could be effectively reduced to 900 °C. The B2O3-doped LNT ceramics are also composed of Li2TiO3ss and “M-phase” phases. No other phase could be observed in the 0.5-2 wt.% B2O3-doped ceramics sintered at 840-920 °C. The addition of B2O3 induced no obvious degradation in the microwave dielectric properties but increased the τf values. Typically, the 0.5 wt.% B2O3-doped ceramics sintered at 900 °C have better microwave dielectric properties of ?r = 49.2, Q × f = 8839 GHz, τf = 57.6 ppm/°C, which suggest that the ceramics could be applied in multilayer microwave devices requiring low sintering temperatures.  相似文献   

7.
The microwave dielectric properties and the microstructures of 0.25 wt.% CuO-doped LaAlO3 ceramics with ZnO additions have been investigated. The sintered LaAlO3 ceramics are characterized by X-ray diffraction spectra and scanning electron microscopy (SEM). Tremendous reduction in sintering temperature can be achieved with the addition of sintering aids CuO and ZnO. The ceramic samples show that dielectric constants (εr) of 22−24 and Q×f values of 33,000−57,000 (at 9.7 GHz) can be obtained at low sintering temperatures 1340−1460°C. The temperature coefficient of resonant frequency varies from −24 to −48 ppm/°C. At the level of 0.25 wt.% CuO and 1 wt.% ZnO additions, LaAlO3 ceramics possesses a dielectric constant (εr) of 23.4, a Q×f value of 57,000 (at 9.7 GHz) and a τf value of −38 ppm/°C at 1400°C for 2 h.  相似文献   

8.
Using Ca(NO3)2·4H2O, Mg(NO3)2·6H2O, Si(OC2H5)4, LiNO3 and Bi(NO3)3·5H2O as raw materials, CaO-MgO-SiO2 submicron powders were prepared at low temperature by sol-gel method. The crystallization temperature was decreased enormously by the introduction of Li-Bi liquid phase sintering aids into Ca-Mg-Si sol, and the powders with average particle sizes of 80-100 nm and 200-400 nm were obtained at the calcining temperature of 750 °C and 800 °C, respectively. The sintering characteristic and dielectric properties of powders calcined at 750 °C with different content of powders calcined at 800 °C were studied. When the content of powders calcined at 800 °C was 10 wt%, the dielectric ceramic sintered at 890 °C had compact structure, and possessed excellent microwave dielectric properties: ?r = 7.16, Q × f = 25630 GHz, τf = −69.26 ppm/°C.  相似文献   

9.
The ceramic system prepared by the conventional solid state method was investigated for its microstructures and microwave dielectric properties. To achieve a temperature-stable material, two compounds with negative and positive temperature coefficients were employed to form mixed phases. The microwave dielectric properties are strongly correlated with composition. For practical application, a dielectric constant (εr) of 37, a quality factor (Q × f value) of 43,000 GHz and a temperature coefficient of resonant frequency (τf) of 1 ppm/°C for 0.6Sm(Co1/2Ti1/2)O3-0.4CaTiO3 sintered at 1420 °C are proposed.  相似文献   

10.
The microwave dielectric properties and the microstructures of MgNb2O6 ceramics with CuO additions (1-4 wt.%) prepared with conventional solid-state route have been investigated. The sintered samples exhibit excellent microwave dielectric properties, which depend upon the liquid phase and the sintering temperature. It is found that MgNb2O6 ceramics can be sintered at 1140 °C due to the liquid phase effect of CuO addition. At 1170 °C, MgNb2O6 ceramics with 2 wt.% CuO addition possesses a dielectric constant (εr) of 19.9, a Q×f value of 110,000 (at 10 GHz) and a temperature coefficient of resonant frequency (τf) of −44 ppm/°C. The CuO-doped MgNb2O6 ceramics can find applications in microwave devices requiring low sintering temperature.  相似文献   

11.
The suitable choice of a substrate material is one of the aims to be fulfilled in high speed microwave technology. LaMgAl11O19 oxide ceramic material, which belongs to the magnetoplumbite family, has been reported earlier as a potential candidate for such applications. This material has been prepared by conventional solid-state ceramic route. The structure has been studied by X-ray diffraction and characterized at microwave frequencies. The effect of dopant and glass addition on the microwave dielectric properties of this material has also been investigated. LaMgAl11O19 has relatively low dielectric constant (εr=14), low dielectric loss or high quality factor (Qu×f>28,000 GHz at 7 GHz) and small temperature variation of resonant frequency (τf=−12 ppm/°C) at room temperature (300 K). These properties make LaMgAl11O19 as a good substrate material and as a dielectric resonator to be used in microwave devices operating at relatively high frequencies.  相似文献   

12.
(1 − x)Ca2/5Sm2/5TiO3-xLi1/2Nd1/2TiO3 (CSLNT) ceramic powder was prepared by a liquid mixing method using ethylenediaminetetraacetic acid (EDTA) as the chelating agent. TG, DTA, XRD and TEM characterized the precursors and derived oxide powders. When x = 0.3, perovskite CSLNT was synthesized at 1000 °C for 3 h in air. The CSLNT (x = 0.3) ceramics sintered at 1200 °C for 3 h show excellent microwave dielectric properties of ?r = 99, Qf = 6200 GHz and τf = 9 × 10−6 °C−1.  相似文献   

13.
Ba8Zn(Nb6−xSbx)O24 (x = 0, 0.3, 0.6, 0.9, 1.2, 1.5, 1.8 and 2.4) ceramics were prepared through the conventional solid-state route. The materials were calcined at 1250 °C and sintered in the range 1400-1425 °C. The structure of the system was analyzed by X-ray diffraction, Fourier transform infrared and Raman spectroscopic methods. The theoretical and experimental densities were calculated. The microstructure of the sintered pellets was analyzed using scanning electron microscopy. The low frequency dielectric properties were studied in the frequency range 50 Hz-2 MHz. The dielectric constant (?r), temperature coefficient of resonant frequency (τf) and the unloaded quality factor (Qu) are measured in the microwave frequency region using cavity resonator method. The τf values of the samples reduced considerably with the increase in Sb concentration. The materials have intense emission lines in the visible region. The compositions have good microwave dielectric properties and photoluminescence and hence are suitable for dielectric resonator and ceramic laser applications.  相似文献   

14.
The phases, microstructure and microwave dielectric properties of ZnTiNb2O8 ceramics with BaCu(B2O5) additions prepared by solid-state reaction method have been investigated using X-ray diffraction (XRD) and scanning electron microscopy (SEM). The pure ZnTiNb2O8 ceramic shows a high sintering temperature of about 1250 °C. However, it was found that the addition of BaCu(B2O5) lowered the sintering temperature of ZnTiNb2O8 ceramics from above 1250 °C to 950 °C due to the BCB liquid-phase. The results showed that the microwave dielectric properties were strongly dependent on densification, crystalline phases and grain size. Addition of 3 wt% BCB in ZnTiNb2O8 ceramics sintered at 950 °C afforded excellent dielectric properties of ?r = 32.56, Q × f = 20,100 GHz (f = 5.128 GHz) and τf = −64.87 ppm/°C. These represent very promising candidates for LTCC dielectric materials.  相似文献   

15.
Oxides of the type, Sr3Zn1−xMgxNb2O9 (0≤x≤1) have been obtained by the ceramic method. These oxides crystallize in the hexagonal cell corresponding to ordered triple perovskites. Sintered disks show nearly frequency-independent dielectric constant for all the compositions. Compositions sintered at 1425°C yield dielectric constant of 20-22 at ∼6 GHz, with quality factor ranging from 1300 to 1500. Sr3Zn0.5Mg0.5Nb2O9 shows a very low temperature coefficient of resonant frequency (τf) of +4 ppm/°C.  相似文献   

16.
The microwave characteristics and the microstructures of 0.88Al2O3-0.12TiO2 with various amounts of MgO-CaO-SiO2-Al2O3 (MCAS) glass sintered at different temperatures have been investigated. The sintering temperature can be lowered to 1300 °C by the addition of MCAS glass. The densities, dielectric constants (εr) and quality values (Q×f) of the MCAS-added 0.88Al2O3-0.12TiO2 ceramics decrease with the increase of MCAS glass content. The temperature coefficients of the resonant frequency (τf) are shifted to more negative values as the MCAS content or the sintering temperatures increase. The change of the crystalline phases of Al2TiO5 phase and rutile-TiO2 phase has profound effects on the microwave dielectric properties of the MCAS-added Al2O3-TiO2 ceramics. As sintered at 1250 °C, 0.88Al2O3-0.12TiO2 ceramics with 2 wt.% MCAS glass addition exists a εr value of 8.63, a Q×f value of 9578 and a τf value of +5 ppm/°C.  相似文献   

17.
Effect of Li2O-B2O3-SiO2 (LBS) glass on the sintering behavior and the microwave dielectric properties of (Zn0.8 Mg0.2)2SiO4-TiO2 (ZMST) ceramics were investigated. The Li2O-B2O3-SiO2 glass lowered the sintering temperature of ZMST ceramics effectively from 1250 to 870 °C. The unknown second phase, which was formed in the ZMST ceramics increased with the addition of LBS glass. With increasing the LBS glass content, the bulk density, dielectric constant (εr) and the maximum Q × f value decreased, and the temperature coefficient of resonant frequency (τf) shifted to a negative value. (Zn0.8 Mg0.2)2SiO4-TiO2 ceramics with 3 wt.% Li2O-B2O3-SiO2 glass sintered at 870 °C for 2 h shows excellent dielectric properties: εr = 8.48, Q × f = 11500 GHz, and τf = 0 ppm/°C.  相似文献   

18.
(5 − x)BaO-xMgO-2Nb2O5 (x = 0.5 and 1; 5MBN and 10MBN) microwave ceramics prepared using a reaction-sintering process were investigated. Without any calcinations involved, the mixture of BaCO3, MgO, and Nb2O5 was pressed and sintered directly. MBN ceramics were produced after 2-6 h of sintering at 1350-1500 °C. The formation of (BaMg)5Nb4O15 was a major phase in producing 5MBN ceramics, and the formation of Ba(Mg1/3Nb2/3)O3 was a major phase in producing 10MBN ceramics. As CuO (1 wt%) was added, the sintering temperature dropped by more than 150 °C. We produced 5MBN ceramics with these dielectric properties: ?r = 36.69, Qf = 20,097 GHz, and τf = 61.1 ppm/°C, and 10MBN ceramics with these dielectric properties: ?r = 39.2, Qf = 43,878 GHz, and τf = 37.6 ppm/°C. The reaction-sintering process is a simple and effective method for producing (5 − x)BaO-xMgO-2Nb2O5 ceramics for applications in microwave dielectric resonators.  相似文献   

19.
Crystal structure and microwave dielectric properties of (1−x)NdAlO3-xCaTiO3 ceramics have been investigated. Crystal structure of the specimens changed with the composition. Rhombohedral structure was found for the specimens with x≤0.1. When 0.3≤x≤0.7, the specimens had the tetragonal structure and it changed to the orthorhombic structure as x exceeded 0.7. Two types of the second phases were observed in (1−x)NdAlO3-xCaTiO3 ceramics. For the specimens with x≤0.5, Nd4Al2O9 phase was observed and Al-rich phase was found in the specimens with x≥0.7. The dielectric constant (εr) and the temperature coefficient of the resonant frequency (τf) increased with the increase of x. The Q×f value of the specimen increased with x and exhibited the maximum value when x=0.5. The microwave dielectric properties of Q×f=45,000 GHz, εr=45 and τf=−1.5 ppm/°C were obtained for 0.3NdAlO3-0.7CaTiO3 ceramics.  相似文献   

20.
Microwave dielectric ceramics in the Sr1−xCaxLa4Ti5O17 (0 ≤ x ≤ 1) composition series were prepared through a solid state mixed oxide route. All the compositions formed single phase ceramics within the detection limit of in-house X-ray diffraction when sintered in the temperature range 1450-1580 °C. Theoretical density and molar volume decreased due to the substitution of Ca2+ for Sr2+ which was associated with a decrease in the dielectric constant (?r) and temperature coefficient of resonant frequency (τf) but an increase in quality factor, Qfo. Optimum properties were achieved for Sr0.4Ca0.6La4Ti5O17 which exhibited, ?r ∼ 53.7, Qfo ∼ 11,532 GHz and τf ∼ −1.4 ppm/°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号