首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nanoporous anodic aluminium oxide has been widely used for the development of various functional nanostructures. So far these self-organized pore structures could only be prepared within narrow processing conditions. Here we report a new oxalic-acid-based anodization process for long-range ordered alumina membranes. This process is a new generation of the so-called "hard anodization" approach that has been widely used in industry for high-speed fabrication of mechanically robust, very thick (>100 microm) and low-porosity alumina films since the 1960s. This hard anodization approach establishes a new self-ordering regime with interpore distances, (D(int))=200-300 nm, which have not been achieved by mild anodization processes so far. It offers substantial advantages over conventional anodization processes in terms of processing time, allowing 2,500-3,500% faster oxide growth with improved ordering of the nanopores. Perfectly ordered alumina membranes with high aspect ratios (>1,000) of uniform nanopores with periodically modulated diameters have been realized.  相似文献   

2.
On aluminium single crystals with (1 1 1), (1 1 0) and (1 0 0) orientation, nanoporous alumina layers were formed in a two-step anodization process within sulphuric acid. The pore ordering within the hexagonal arrangement of the nanopores was documented by scanning electron microscopy (SEM), described on the basis of defect thermology and analyzed quantitatively by image evaluation. The best ordering was obtained in nanoporous alumina on (1 0 0) aluminium. We supposed that this is caused by the interface energy term within the driving force for the formation of the nanoporous alumina, since – in contrast to (1 1 1) and (1 1 0) aluminium as substrate – in the case of (1 0 0) aluminium the interface energy is minimised in the waved interface between aluminium and hexagonally arranged nanoporous alumina.  相似文献   

3.
Nanoporous anodic aluminium oxide has traditionally been made in one of two ways: mild anodization or hard anodization. The first method produces self-ordered pore structures, but it is slow and only works for a narrow range of processing conditions; the second method, which is widely used in the aluminium industry, is faster, but it produces films with disordered pore structures. Here we report a novel approach termed "pulse anodization" that combines the advantages of the mild and hard anodization processes. By designing the pulse sequences it is possible to control both the composition and pore structure of the anodic aluminium oxide films while maintaining high throughput. We use pulse anodization to delaminate a single as-prepared anodic film into a stack of well-defined nanoporous alumina membrane sheets, and also to fabricate novel three-dimensional nanostructures.  相似文献   

4.
Anodic aluminium oxide (AAO) template with hexagonal shaped nano-pores with high aspect ratio was fabricated by two-step anodization processes from high purity aluminium foil. It was observed that pore dimensions were affected by anodizing voltage, electrolyte temperature and the duration of anodization time. The vertical growth rate of the pores (10?C250?nm/min) was found to vary exponentially with anodizing voltage; however, it exhibits linear increment with the electrolyte temperature. The measured pore diameter (50?C130?nm) shows a linear variation with anodizing voltage. The bottom barrier oxide layer was etched out by pore widening treatment to obtain through holes.  相似文献   

5.
Porous anodic alumina (PAA) template is widely used to prepare ordered nanostructure materials. But conventional PAA templates have been restricted for application in micro-electro-mechanical systems (MEMS) technology due to limitations such as shape and brittleness. In this article, a novel process of fabricating alumina porous template based on silicon wafer is described. Porous alumina films were formed by two-step anodization of aluminum layers sputter deposited on silicon wafer. The pore diameters range from 80 to 100 nm. The Pilling–Bedworth ratio of Al/Al2O3 was measured and calculated. Thickness of PAA template can be precisely controlled. This research provides an effective tool to nanofabrication in MEMS technology.  相似文献   

6.
A simple semi sol-gel method for preparation of stable alumina monoliths is presented. The approach is based on chemical binding of boehmite by hydrolysis products of aluminium nitrate. The crystalline phase of the monoliths depends on the calcination temperature, and the size and shape of the alumina crystallites were determined by transmission electron microscopy and modelling of X-ray diffraction patterns. The monoliths have bimodal pore size distributions with mesopores ranging from 3 to 20 nm and macropores ranging from 10 to 40 μm. Incipient wetness impregnation resulted in gold particles, ranging from 4 to 20 nm, supported on the monoliths. The size of the gold particles depended largely on the crystalline phase of the support, but also on the amount of gold precursor. The catalytic activity of the functionalised materials in liquid-phase oxidation of glucose was higher in continuously stirred batch reactor tests compared to continuous flow fix bed tests. In both cases the activity was improved as the size of gold particles decreased.  相似文献   

7.
Lead zirconate titanate (PZT) nanotubes have been grown using porous anodic alumina templates. Sol–gel electrophoretic deposition method was utilized to form the nanotubes on pore walls. The templates were prepared using various anodizing voltages to achieve different pore diameters. Phosphoric acid solution was employed as the electrolyte. Stabilized PZT sols were prepared using lead acetate trihydrate and modified precursors of zirconium and titanium with acetic acid. The filled templates were then sintered at 700 °C. Scanning electron microscopy (SEM) shows that tubular PZT arrays have been efficiently grown in the alumina templates. Transmission electron microscopy (TEM) further confirms the tubular form and polycrystalline nature of the tubes. Energy dispersive X-ray (EDX) analyses also confirm the composition of the tubes. X-ray diffraction (XRD) spectra indicate the presence of the perovskite PZT as the main phase.  相似文献   

8.
Anodization techniques by alternating current (ac) are introduced in this review. By using ac anodization, laminated alumina films are fabricated. Different types of alumina films consisting of 50–200 nm layers were obtained by varying both the ac power supply and the electrolyte. The total film thickness increased with an increase in the total charge transferred. The thickness of the individual layers increased with the ac voltage; however, the anodization time had little effect on the film thickness. The laminated alumina films resembled the nacre structure of shells, and the different morphologies exhibited by bivalves and spiral shells could be replicated by controlling the rate of increase of the applied potentials.  相似文献   

9.
Li Y  Ling ZY  Chen SS  Wang JC 《Nanotechnology》2008,19(22):225604
Porous anodic alumina (PAA) membranes with highly ordered hexagonal cells and a novel pore structure have been fabricated by two-step hard anodization in a H(2)SO(4)-Al(2)(SO(4))(3)-H(2)O system at 40 and 50?V, giving average cell diameters of 77 and 96?nm, respectively. There are several tiny pores embedded in each big shallow pore on the top of the membranes, and there is only one pore in one cell at their bottom. The cells on both sides of the membranes present almost the same periodic arrangement. In order to explore the formation of the novel pore structure, PAA membranes fabricated at different current densities (30-200?mA?cm(-2)) are obtained by maintaining a constant voltage at 40?V. The experimental results show that the interpore distance is not only dependent on the anodization voltage, but is also influenced by the current density, which means that the pore structure of PAA membranes fabricated by hard anodization can be accurately designed and controlled by adjusting the anodization voltage and current density simultaneously.  相似文献   

10.
The light extraction efficiencies of organic light emitting diodes (OLEDs) utilizing various kinds of porous alumina films with different pore diameters were investigated. The OLEDs with the porous alumina film deposited on the glass surface were fabricated to improve their light extraction efficiency. The porous alumina film was fabricated by using a two step anodizing electrochemical procedure. The current densities as functions of the applied voltage do not significantly change, regardless of the existence and the magnitude of the pore diameter in the porous alumina film. The luminance efficiency of the OLEDs increased with increasing pore diameter. The luminance efficiency of the OLEDs utilizing the porous alumina film with a pore diameter of 70 nm was enhanced approximately 9% in comparison with that of the OLEDs without the porous alumina film. These results indicate that highly efficient OLEDs can be fabricated using a porous alumina film with an optimum pore diameter.  相似文献   

11.
Cu nanowire arrays were synthesized via a porous alumina membrane (PAM) template with a high aspect ratio, uniform pore size (120–140 nm), and ordered pore arrangement. The Cu2O nanowire arrays were prepared from the oxidization of Cu metal nanowire arrays. The electrochemical deposition potential of Cu metal nanowires (?180 mV vs. SCE) was determined from X-ray diffraction (XRD) patterns. The microstructure and chemical composition of Cu nanowire arrays were characterized using field emission scanning electron microscopy (FE-SEM), high resolution transmission electron microscopy (HR-TEM), and X-ray diffraction (XRD). Results indicate that the Cu/Cu2O nanowire arrays assembled into the nanochannel of the porous alumina template with diameters of 120–140 nm. The valence of copper was controlled by the porous alumina template during the annealing process. Copper nanowires transformed to the Cu2O phase with the space limitation of the PAM template. Single-crystal Cu2O nanowire arrays were also obtained under the template embedded.  相似文献   

12.
Eutectic Bi-43Sn (in weight percent) nanowires with diameters of 20 nm, 70 nm and 220 nm respectively, were fabricated by a hydraulic pressure injection process using anodic aluminum oxide (AAO) as templates. Novel eutectic microstructure was found within the fabricated nanowires, which are composed of alternating Bi and Sn segments along their wire axes. Within the segments, the electron diffraction analysis revealed single crystalline structures of Bi and Sn elements respectively. Parameters that control the nanowire fabrication process were discussed. It was found out that as the wire diameter reduced, longer Bi and Sn segments formed.  相似文献   

13.
The electrochemical formation of nanotubular titanium oxide films was investigated in 1 M H2SO4 and 0.05-0.4 wt.% HF electrolytes. Depending on anodization condition, i.e. cell voltage, anodization time, HF concentration, TiO2 porous films having different thickness (from 350 to 500 nm) and pore diameter (from 40 to 150 nm) were obtained. By varying the cell voltage from 10 V to 40 V it was possible to gradually change the crystal structure of titanium oxide from anatase to rutile. The effect of annealing temperature and duration on crystal structure was also considered.  相似文献   

14.
Porous anodic aluminum oxide (AAO) thin films on quartz substrates were fabricated via evaporation of a 100-nm thick Al, followed by anodization with different durations and pore widening and Al removal by chemical etching. The transmittance and reflectance of AAO films on quartz substrates were measured by optical spectrophotometry. The microstructure and morphology were examined by scanning electron microscopy. The pore diameter of AAO films after pore widening and Al removal is 60 ± 4 nm and the interpore distance is 88 ± 5 nm. It is found that the reflectance decreases and the transmittance increases with the increase of the anodization time and pore widening. Compared to a bare substrate, the transmittance of AAO films after pore widening and Al removal is about 3.0% higher, while the reflectance is about 3.0% lower over a wide wavelength range. Additionally, after pore widening and Al removal, when AAO films are prepared on both sides of the quartz substrate, the highest transmittance is about 99.0% in the wavelength range 570-680 nm. The optical constants and thickness of AAO films after pore widening and Al removal were retrieved from normal incidence transmittance data. Results show that the refractive index is lower than 1.25 in the visible optical region and that the porosity is about 0.70.  相似文献   

15.
Xiaobo Chen 《Thin solid films》2007,515(24):8511-8514
We report the fabrication of TiO2 nanotube thin films using anodization method with HCl electrolyte and copper cathode. The process represents an alternative electrochemical approach using a non-noble metal cathode along with a safer electrolyte. In addition to the choice of electrolyte, the electrolyte concentration, anodization voltage, and anodization time all affect nanotube morphology. TiO2 nanotubes with diameters as small as 10 nm were achieved.  相似文献   

16.
《Materials Research Bulletin》2004,39(7-8):1023-1028
Large-scale CeO2 nanowires were prepared successfully by an improved sol–gel process within the nanochannels of porous anodic alumina templates. In this process, cerium nitrate and urea were used as precursors, cerium nitrate acted as cerium ions source, and urea offered a basic medium through its hydrolysis. The as-synthesized CeO2 nanowires can be indexed as a fluorite-structure and the size of nanowires is uniform, with diameters of about 70 nm. The formation mechanism of nanowires is also discussed here. This method is more efficient than a traditional sol–gel template process for small pore diameter templates.  相似文献   

17.
Large size anodic alumina film has not been used in the industry due to that the fabrication parameters are very difficult to control, but the fabrication of large size anodic alumina is exigent as a template in the fabrication of diverse nano-devices oriented to the industrialization. In this paper, large size (width length = 80 mm × 80 mm) porous ordered anodic alumina film was fabricated by using two-step anodization process as compared to the small size (diameter = 40 mm) anodic alumina film in the structures. Pore size and film thickness of anodic alumina film are strongly related to the size of the anodization film. The large size anodic alumina film has an ideally ordered pattern by applying low voltage. However, with the increase of voltage, the ordered pattern of the PAA films was gradually disrupted, especially in the 70 V due to the local thermal imbalance.  相似文献   

18.
A quantitative investigation of the effect of process parameters such as electrolyte concentration, temperature, anodization duration and anodization potential on the pore pattern (including pore diameter and distribution) in anodic alumina was performed based on aluminum anodization experiments. Using fast Fourier transform (FFT) analysis, we developed a method to quantify the orderedness of pore distribution. We found that at a lower temperature the anodization protocol of a 1 hr first step followed by a 4 hr second step did not cause any change in pore orderedness as opposed to the anodization protocol of a 12 hr first step followed by a 1 hr second step, but at a higher temperature the former improved the pore orderedness. Increasing the electrolyte concentration, improved the pore orderedness. Varying the electrolyte concentration, temperature, and anodization duration did not have any effect on the pore diameter. Increasing the anodization potential, however, not only improved the pore orderedness but also increased the pore diameter. Linear relationships exist between the pore diameter and anodization potential and between the center to center pore spacing and applied anodization potential.  相似文献   

19.
The growth of porous anodic films at 60 V in an alkaline 0.13 M borax electrolyte at 333 K is examined using sputtering-deposited aluminium substrates, with a fine band of incorporated tungsten tracer. The findings reveal amorphous alumina films containing approximately conical major pores incorporating finer secondary pores, with film thicknesses similar to that of the oxidized aluminium. Further, the distribution of the tungsten tracer within the film is mainly consistent with its expected migration behaviour in anodic alumina. The results indicate that pore development under the present growth conditions is dominated by field-assisted dissolution of anodic alumina, with an efficiency of film growth of about 50%. The findings are in contrast with those of porous anodic films formed in phosphoric acid electrolyte, which are significantly thicker than the layer of oxidized metal.  相似文献   

20.
A method for surface engineering of structural gradients with nanopore topography using the self-ordering process based on electrochemical anodization of aluminum is described. A distinct anodization condition with an asymmetrically distributed electric field at the electrolyte/aluminum interface is created by nonparallel arrangement between electrodes (tilted by 45°) in an electrochemical cell. The anodic aluminum oxide (AAO) porous surfaces with ordered nanopore structures with gradual and continuous change of pore diameters from 80 to 300 nm across an area of 0.5-1 cm were fabricated by this anodization using two common electrolytes, oxalic acid (0.3 M) and phosphoric acid (0.3 M). The formation of pore gradients of AAO is explained by asymmetric and gradual distribution of the current density and temperature variation generated on the surface of Al during the anodization process. Optical and wetting gradients of prepared pore structures were confirmed by reflective interferometric spectroscopy and contact angle measurements showing the ability of this method to generate porous surfaces with multifunctional gradients (structural, optical, wetting). The study of influence of pore structures on cell growth using the culture of neuroblastoma cells reveals biological relevance of nanopore gradients and the potential to be applied as the platform for spatially controllable cell growth and cell differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号