首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
2.
Two carbons were synthesized for use as platinum electrocatalyst supports for methanol oxidation. For both materials, furfuryl alcohol was used as the carbon precursor; however, one (CPEG) was made using poly ethylene glycol as the pore former, while the other (CSRF) was produced using Pluronic® F127 as the soft template by organic–organic self-assembly. The CPEG and CSRF carbons were estimated from nitrogen physisorption experiments to be micro- and mesoporous, respectively. Platinum nanoparticles were deposited on each carbon as well as on Vulcan XC-72 carbon by the formic acid reduction method. The physicochemical properties of electrocatalysts were studied using X-ray diffraction (XRD), transmission electron microscopy (TEM), and energy dispersive X-ray analysis (EDX), and their electrochemical features were examined using cyclic voltammetry, chronoamperometry, and impedance spectroscopy. It was found that higher methanol oxidation peak current densities as well as lesser charge transfer resistance at electrode/electrolyte interface were obtained for Pt supported on CSRF as compared to those on Vulcan XC-72 carbon, owing to the higher specific surface area and larger total pore volume (696 m2 g−1 and 0.60 cm3 g−1, respectively) together with superior electrical conductivity of mesoporous CSRF. On the other hand, the lower surface area and pore volume of microporous CPEG substrate confined Pt nanoparticles deposition and thus made CPEG-supported Pt an inefficient methanol oxidation electrocatalyst.  相似文献   

3.
Two-dimensional (2D) mesoporous polymers, combining the advantages of organic polymers, porous materials, and 2D materials, have received great attention in adsorption, catalysis, and energy storage. However, the synthesis of 2D mesoporous polymers is not only challenged by the complex 2D structure construction, but also by the low yield and difficulty in controlling the dynamics of the assembly during the generation of mesopores. Herein, a facile multi-dimensional molecular self-assembly strategy is reported for the preparation of 2D mesoporous polydiaminopyridines (MPDAPs), which features tunable pore sizes (17–35 nm) and abundant N content up to 18.0 at%. Benefitting from the abundant N sites, 2D nanostructure, and uniform-large mesopores, the 2D MPDAPs exhibit excellent catalytic performance for the Knoevenagel condensation reaction. After calcination under N2 atmosphere, the obtained 2D N-doped mesoporous carbon (NMCs) with large and uniform pore sizes, high surface areas, abundant N content (up to 23.1%), and a high ratio of basic N species (57.0% pyridinic N and 35.9% pyrrolic N) can show an excellent CO2 uptake density (11.7 µmol m−2 at 273 K), higher than previously reported porous materials.  相似文献   

4.
Nanoscale MgH2 was synthesized through loading di-n-butylmagnesium (MgBu2) solution into the pores of ordered mesoporous silicas (SBA-15) with a pore diameter in a range of 5–10 nm, followed by freeze drying and hydrogenation treatment. The MgBu2 inside the pore channels of SBA-15 decomposed into MgH2 upon hydrogenation at 493 K under 6 MPa hydrogen. The nanoconfined MgH2 exhibited greatly decreased desorption temperature of 540 K, a reduction of 146 K in comparison with that of commercial MgH2, or 65 K reduction relative to that of MgH2 obtained from MgBu2 without confinement. Moreover, lower desorption temperature for the MgH2 supported by SBA-15 with smaller pore diameter. The improvement on the dehydrogenation properties of MgH2 was attributed to the nanosizing effect induced by the nanoconfinement of mesoporous silica.  相似文献   

5.
Comparative research of matrix and bulk carbonization of some organic precursors (sucrose, acetonitrile) in silica mesoporous materials SBA-15 and KIT-6 was conducted. X-ray diffraction, nitrogen adsorption analysis, Raman spectroscopy were used for determination of the structural-sorption characteristics of the obtained materials. It was shown that the carbon mesoporous materials CMK-8 obtained in the mesopores of KIT-6 had higher adsorption characteristics because of features of three-dimensional cubic structure, larger pore volume and framework’s wall thickness. It was established that partially graphitized spatially well-organized carbon materials were formed as a result of pyrolysis of acetonitrile in the silica matrices SBA-15 and KIT-6. It was conditioned by the absence of considerable spatial limitations for growth of graphite structures on the initial stage of the synthesis when the pores of the matrix were not filled up with the organic precursor. Product of bulk carbonization of sucrose is compact carbon microporous framework with low sorption characteristics (micropore volume is 0.09 cm3/g).  相似文献   

6.
Mesoporous yttria-stabilized zirconia (YSZ) membranes can be used for liquid phase applications in harsh environments and as supports for ultra-thin dense ceramic, carbonate, or metallic membranes. This article reports on the synthesis and characterization of three-layer mesoporous ceramic membranes consisting of a mesoporous YSZ layer, a macroporous YSZ intermediate layer, and macroporous α-alumina support. The macroporous YSZ intermediate layer was coated on the alumina support using a suspension of submicron-sized YSZ powders, and the mesoporous YSZ layer was obtained by dip-coating with diluted zirconia sol doped with yttrium nitrate. The mesoporous YSZ layer has desired cubic phase structure. Crack-free mesoporous YSZ membranes could be obtained by multiple dip-coating, drying, and calcination using a dilute YSZ sol at a concentration of 0.014 M with the help of using a drying control chemical additive. The 5 times dip-coated mesoporous YSZ membranes were about 1 μm in thickness with an average pore diameter of 3 nm. The mesoporous YSZ membranes exhibited Knudsen separation factor. The characteristics of the dip-coating process for the mesoporous YSZ membranes on the macroporous YSZ support are similar to those on the macroporous alumina support.  相似文献   

7.
A series of bimetallic Fe–Ti-MCM-48 materials was successfully synthesized via sol–gel method using cetyltrimethylammonium bromide (CTAB) as a template and silatrane, iron (III) chloride, and titanium (IV) isopropoxide as silica, iron, and titanium sources, respectively. Scanning electron microscopy (SEM) showed the truncated octahedron morphology of Fe–Ti-MCM-48.X-ray diffraction (XRD) patterns showed well-defined, order cubic mesoporous structures. X-ray fluorescence (XRF) revealed the total metal content of the final product. UV–visible absorption spectra confirmed both iron (Fe3+) and cerium (Ti4+) species highly dispersed in the framework, while N2 adsorption/desorption measurements indicated a high specific surface area. As metal content increased, the mesoporous order and surface area decreased. The synthesized Fe–Ti-MCM-48 with 0.01Fe/Si and 0.01Ti/Si ratio still retained a cubic structure after hydrothermal treatment at 100 °C for 72 h.  相似文献   

8.
In this work, Copper Indium disulfide (CIS) nanoparticles of size ∼ 5 nm were prepared via solvothermal approach in ethanol under the nitrogen atmosphere using copper chloride, indium chloride and thiourea (Tu) as starting materials, without any assistance through organic ligands at the reaction temperature of 150 °C. The factors which might affect the morphology, structure, phase of the product during the synthesis were discussed. It was found that the products were significantly affected by the reaction time and solvent. The morphology, structure, phase constituents and optical properties of the as prepared CIS powders were characterized by X-ray diffraction (XRD), Energy dispersive Spectroscopy (EDS), scanning electron microscopy (SEM) and ultraviolet–visible (UV–Vis) spectrometry respectively. The result shows that the CIS nanoparticles can be synthesized by solvothermal method at a reaction time of 2 h and shows that when the reaction time was increased from 2 h to 48 h, CIS porous flower like nanoparticles were obtained as we increase the reaction time. We also observed that in this process, the phase selection of WZ-CIS or CH-CIS is greatly influence by solvent. We also observed that, in this process sulfur source did not influence the phase but participated in the growth of the nanoparticles.  相似文献   

9.
Carbon nanotube-implanted mesoporous carbon spheres were prepared by an easy polymerization-induced colloid aggregation method using gelatin as a soft template. Scanning electron microscopy, transmission electron microscopy and nitrogen adsorption–desorption measurements reveal that the materials are mesoporous carbon spheres, with a diameter of ∼0.5–1.0 μm, a specific surface area of 284 m2/g and average pore size of 3.9 nm. Using the carbon nanotube-implanted mesoporous carbon spheres as electrode material for supercapacitors in an aqueous electrolyte solution, a low equivalent series resistance of 0.83 Ω cm2 and a maximum specific capacitance of 189 F/g with a measured power density of 8.7 kW/kg at energy density of 6.6 Wh/kg are obtained.  相似文献   

10.
Biomaterials are needed for tissue regeneration applications that provide control of mechanical properties and enhanced toughness compared to conventional bioceramics. New sol–gel hybrids were developed with interpenetrating networks of silica and bis(3-aminopropyl) polyethylene glycol. Covalent coupling between the organic and the inorganic components was used to control mechanical properties of the hybrids. The objective was to synthesise and characterise a bis(3-aminopropyl) polyethylene glycol silica hybrid material with 35 wt% organic and 65 wt% inorganic and covalent coupling between the components. A coupling agent, 3-glycidopropyltrimethoxysilane (GPTMS) was used to form the covalent links. The hypothesis was that the epoxy ring of the GPTMS would react with the polymer, leaving a polymer functionalised with siloxane groups. In a sol of hydrolysed tetraethyl orthosilicate (TEOS) the siloxanes from the GPTMS form –Si–O–Si– bonds between the functionalised polymer and the silica network. Bis(3-aminopropyl) polyethylene glycol contains two terminal amino groups available for the covalent functionalisation with the epoxy group of GPTMS. Hybrids with 35 wt% organic and 65 wt% inorganic with a ratio of GPTMS:PEG of 1:4 were proven to have an excellent balance between strain to failure (10%) and compressive strength (20 MPa). However, the functionalisation of the polymer was followed by liquid NMR as a function of the aging time and temperature and the expected reaction of nucleophilic attack of the epoxy ring by the amino group of the polymer did not happen until the water was removed from the system during drying. Increasing the amount of GPTMS decreased rate of weight loss during immersion in TRIS buffer solution.  相似文献   

11.
Novel thermally stable and 2D mesoporous niobia phases were prepared by the evaporation induced self-assembly (EISA) with high surface areas (up to 211 m2/g). The pore size of these novel mesoporous niobium oxides was tuned in a wide range from 4.6 to 21 nm by increasing the aging temperature, aging time, and humidity of aging atmosphere. Mixtures of two nonionic surfactants, Pluronic P123 and Brij 35, were for the first time used to tune the pore structure of resultant mesoporous niobia phases which showed that the mesopore shape may be switched from cylindrical to ink-bottle. The niobia mesostructures obtained in this study were thermally stable up to 500 °C. These novel mesoporous niobium oxides with tunable pore sizes are highly promising as catalytic supports and a major component in the synthesis of porous Nb-containing mixed metal oxides, such as MoVTeNbO x catalysts for selective (amm)oxidation of propane.  相似文献   

12.
The hydrothermal synthesis of various mesoporous materials with mordenite (MOR) structures is performed under perturbation conditions involving varying-temperature crystallizations and the use of ternary organic templates, and at least three types of mesoporous materials are obtained from the same starting gel containing the ternary organic templates. The greater structural diversities of these materials are found to correlate remarkably with the second-staged crystallization temperature and time. Among these materials, the two mesoporous materials crystallized incompletely over low temperature periods are differently structural composites consisting of MOR crystallites within disordered mesoporous phases, whereas the mesoporous mordenite crystallized completely over relatively high temperature period possesses the intrinsic microporosity and hierarchical mesoporosity. TEM morphological investigations on the mesoporous mordenite crystals demonstrate the formation of intracrystalline mesopores. Furthermore, an entirely new approach to synthesize mesoporous MOR zeolites is proposed based on the pore-inducing role of MOR structure defects and the adequate perturbation towards synthesis conditions.  相似文献   

13.
Layered clay minerals from the smectite group with different chemical composition and resulting layer charge (e.g. pyrophyllite, illite, hectorite and montmorillonite) were characterised for their dielectric properties in the far-infrared region using terahertz-time domain spectroscopy (THz-TDS). Samples with distinct cation exchange capacity such as hectorite and montmorillonite were modified using cation exchange reaction with alkylamines or amino acids. The presence of these species in 2D gallery was proved by X-ray diffraction and Fourier transform infrared spectroscopy. The frequency-dependent refractive index of these minerals was determined in the experimentally accessible range of 0.1–3.0 THz (3–100 cm−1) using THz-TDS. Pristine samples revealed their refractive indices to be 1.82–2.15 at about 1 THz while the modified montmorillonite samples had their refractive indices changed by organic molecules used for their modification to 1.70–2.35 for amines and 1.97–2.36 for amino acids. The presence of organic substances in 2D gallery of clays was detectable despite the relatively high absorption of smectites with magnitude of 100 cm−1.  相似文献   

14.
Temperature dependences of electric conductivity and thermoelectric power of some recently synthesized organic compounds, 4-tert-butylcalix[4]arene derivatives, are studied. Thin-film samples (d = 0.10–0.40 μm) spin-coated from chloroform solutions onto glass substrates were used. Organic films with reproducible electron transport properties can be obtained if, after deposition, they are submitted to a heat treatment within temperature range of 295–575 K.  相似文献   

15.
Palladium colloidal nanoparticles with an average size of approximately 2.4 nm have been incorporated into mesoporous inorganic thin films following a multistep approach. This involves the deposition of mesoporous titania thin films with a thickness of 200 nm by spin-coating on titanium plates with a superhydrophilic titania outer layer and activation by calcination in a vacuum furnace at 573 K. Nanoparticles have been confined within the porous titania network by dip-coating noble metal suspensions onto these mesoporous thin films. Finally, the resulting nanoconfined systems were used as substrates for the growth of oriented carbon nanotubes (CNTs) using plasma-enhanced chemical vapour deposition at 923 K in order to enhance their surface area. These CNTs were tested in the hydrogenation of phenylacetylene by hydrogen in a batch reactor. The initial reaction rate observed on a CNT/TiO2 structured catalyst was considerably higher than that on 1 wt% Pd/TiO2 thin films.  相似文献   

16.
介孔硫化锌的合成与表征   总被引:5,自引:0,他引:5  
李佳  宁光辉  赵晓鹏 《功能材料》2005,36(4):606-609
以表面活性剂十二胺( Dodecylamine,DDA)为模板剂, 在中性条件下合成了ZnS颗粒的介孔(mesoporous)结构, 结合N2 吸附脱附曲线、透射电子显微分析(TEM)和X射线衍射(XRD)对所得样品进行了表征。结果表明,采用溶剂萃取的方法除去模板剂后得到了高纯度、立方相的ZnS 介孔结构颗粒,产品具有较高比表面积(223m2/g)和较窄孔径分布(4.9nm)。此外,借助傅立叶红外分析(FTIR)和热失重分析(TGA),讨论了有机模板剂在不同样品中的存在和作用。  相似文献   

17.
Rapid synthesis of silica with ordered hexagonal mesopore arrangement was obtained using solution plasma process (SPP) by discharging the mixture of P123 triblock copolymer/TEOS in acid solution. SPP, moreover, was utilized for Ag nanoparticles (AgNPs) incorporation in silica framework as one-batch process using silver nitrate (AgNO3) solution as precursor. The turbid silicate gel was clearly observed after discharge for 1 min and the white precipitate formed at 3 min. The mesopore with hexagonal arrangement and AgNPs were observed in mesoporous silica. Two regions of X-ray diffraction patterns (2θ < 2° and 2θ = 35–90°) corresponded to the mesoporous silica and Ag nanocrystal characteristics. Comparing with mesoporous silica prepared by a conventional sol–gel route, surface area and pore diameter of mesoporous silica prepared by solution plasma were observed to be larger. In addition, the increase in Ag loading resulted in the decrease in surface area with insignificant variation in the pore diameter of mesoporous silica. SPP could be successfully utilized not only to enhance gelation time but also to increase surface area and pore diameter of mesoporous silica.  相似文献   

18.
The present study is the first report on the synthesis and characterization of mesoporous composites based on natural rubber (NR) and hexagonal mesoporous silica (HMS). A series of NR/HMS composites were prepared in tetrahydrofuran via an in situ sol–gel process using tetraethylorthosilicate as the silica precursor. The physicochemical properties of the composites were characterized by various techniques. The effects of the gel composition on the structural and textural properties of the NR/HMS composites were investigated. The Fourier-transform infrared spectroscopy (FTIR) and 29Si magic angle spinning nuclear magnetic resonance (29Si MAS NMR) results revealed that the surface silanol groups of NR/HMS composites were covered with NR molecules. The powder X-ray diffraction (XRD) and transmission electron microscopy (TEM) data indicated an expansion of the hexagonal unit cell and channel wall thickness due to the incorporation of NR molecules into the mesoporous structure. NR/HMS composites also possessed nanosized particles (∼79.4 nm) as confirmed by scanning electron microscopy (SEM) and particle size distribution analysis. From N2 adsorption–desorption measurement, the NR/HMS composites possessed a high BET surface area, large pore volume and narrow pore size distribution. Further, they were enhanced hydrophobicity confirmed by H2O adsorption–desorption measurement. In addition, the mechanistic pathway of the NR/HMS composite formation was proposed.  相似文献   

19.
Nanostructured ferrite spinels AFe2O4 (A = Co, Ni, Zn) were successfully synthesized via a co-precipitation method using oxalate salt as a precursor in an anionic surfactant system in combination with a simple calcination process. High crystallinity samples of nanoparticle spinels in a grain size range of 15–100 nm were obtained by varying the calcination temperature (300–700 °C) and time (1–5 h). Their pore sizes were controlled in a range of 3 nm up to a hundred nm by tailoring the calcination conditions. Raising the calcination temperature was found to decrease the Brunauer–Emmett–Teller (BET) surface area, and broaden the pore structure due to enhanced crystal growth and agglomeration of interparticles of spinels. Transmission electron microscopy (TEM) images of ferrite spinels calcined at 300 °C showed mesoporous structures with narrow pore size distribution, and the maximum BET surface area of CoFe2O4, NiFe2O4 and ZnFe2O4 were found at 201 (Co), 315 (Ni), and 273 (Zn) m2 g−1, respectively. The magnetic hysteresis loops of the ferrite spinels at room temperature demonstrated ferromagnetism in CoFe2O4, superparamagnetism–ferromagnetism in NiFe2O4, and paramagnetism in ZnFe2O4. The highest saturation magnetization (Ms), remanent magnetization (Mr), and coercivity (Hc) were obtained from high crystallinity spinels calcined at 700 °C. Nanostructured AFe2O4 with high surface area and mesoporosity promises potentials as novel magnetic catalysts.  相似文献   

20.
Mesoporous TiO2 thin films were prepared by hydrothermal-oxidation of titanium metal thin films, which were obtained by DC magnetron sputtering technique. Gold nanoparticles, which were prepared by reduction of HAuCl4, were embedded into the holes of the mesoporous TiO2 films by capillary method followed by annealing in air up to 400 °C. The size of pore of TiO2 films is about 100 nm and that of Au nanoparticles is about 10 nm in average. The morphology of the films was analyzed by field emission scanning electron microscope (FE-SEM) and scanning probe microscopes (SPMs). Subsequently, the photocatalytic performances of the obtained nanosystems in the decomposition of methylene blue solution are discussed. The obtained results show that the dispersion of Au nanoparticles on the mesoporous TiO2 matrix will help enhancing the photocatalytic activity with respect to pure TiO2 under visible light irradiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号