首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
NaSm9(SiO4)6O2 powders were synthesized by mild hydrothermal method at 180 °C for 24 h. The infrared optical properties and structure of the obtained powders were characterized. There existed two narrow and sharp absorptive bands near 943 cm− 1 (10.6 μm). The band at 938 cm− 1 was assigned to the stretching vibrations of SiOSm groups connecting to Q1 species and the band at 989 cm− 1 was attributed to the stretching vibrations of SiOSm groups linking with Q0 species. The reflectivity was lower than 1% from 900 to 1200 nm and reached the minimum of 0.46% at 1073 nm. The prepared powders exhibit potential to act as a new kind of absorptive material for the infrared light of 10.6 μm and 1.06 μm.  相似文献   

7.
8.
9.
10.
11.
Perovskite structure-based ceramic precursors have a characteristic property of substitution in the ‘A’ site of the ABO3 structure. This makes them a potential material for nuclear waste management in synthetic rock (Synroc) technology. In order to simulate the mechanism of rare earth fixation in perovskite, PrxCa1−xTiO3 (where x = 0.1) has been synthesized through ceramic route by taking calculated quantities of oxides of Ca, Ti and Pr as starting materials. The ceramic phase has been characterized by its powder diffraction pattern. The Rietveld analysis of the X-ray diffraction data has been carried out using GSAS software to achieve the convergence which gives the Rp = 5.74% and Rwp = 8.17%. The (h, k, l) values for different lattice planes have been calculated. The praseodymium substituted perovskite crystallizes in orthorhombic symmetry with space group: Pbnm, Z = 4. The unit cell parameters at room temperature are a = 5.39609(31) Å, b = 5.44869(30) Å and c = 7.6565(5) Å. The calculated and observed values of the corresponding intensities, 2θ and density of the polycrystalline powder show good agreement. GSAS-based calculation for bond distances TiO, CaO and bond angles OTiO, OCaO has been reported.  相似文献   

12.
SiCxNy thin films were produced by plasma-enhanced chemical vapor deposition and characterized by ellipsometry, Fourier transform infrared and Raman spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, as well as, by near-edge X-ray absorption fine structure measurements in total-reflection X-ray fluorescence geometry. The temperature of synthesis was varied between 100 °C and 800 °C, the precursors hexamethyldisilazane or hexamethylcyclotrisilazane were used with an addition of N2, He, and NH3, respectively. The composition of the products was determined to be constant in Si with about 20 at.%, whereas the sum of C and N results in 80 at.% (each varying between 20 and 60 at.%). Consequently, it can be stated, that in the produced silicon carbonitride a network of Si is built with SiCSi, SiCCSi, and SiNSi bridges. The comparison of the chemical composition and of the physical properties shows for the samples produced with He or N2, respectively (without NH3) that the refractive index and the absorption coefficient are increasing with an increasing content of carbon in the final formula SiC4 − nNn (with n = 1, 2, or 3).  相似文献   

13.
In this work, we study the dilution of Spin-On Glass (SOG) in order to obtain high quality SiO2 films at 200 °C, with optical and electrical characteristics similar to those of the thermally grown SiO2. For the production of SiO2 films we used 2-propanol and deionized water (DI) as diluents for the SOG and we compared the electrical and optical film properties with those of the films obtained from undiluted SOG. From Fourier transform infrared spectroscopy we observed a considerable reduction of SiOH (920 cm− 1), OH (3490 cm− 1) and CH, CO bonds (1139 cm− 1) in the films produced from SOG diluted with DI. Besides the above, the insulator breakdown field was approximately 21 MV/cm, the refractive index and the dielectric constant were close to those of the thermally grown SiO2. Our results suggest that the film produced from SOG diluted with DI and cured at 200 °C is an excellent candidate to be used as insulator on flexible and large-area electronics.  相似文献   

14.
A new titanium oxyphosphate Mg0.50TiO(PO4) has been synthesized and characterized by several physical techniques: X-ray diffraction, 31P MAS-NMR, Raman diffusion, infrared absorption and diffuse reflectance spectroscopy. It crystallizes in the monoclinic system with unit cell parameters: a = 7.367(9), b = 7.385(8), c = 7.373(9) Å, β = 120.23(1), with the space group P21/c (no. 14), Z = 4. The crystal structure has been refined by the Rietveld method using X-ray powder diffraction. The conventional R indices obtained are Rwp = 0.138, Rp = 0.096 and RB = 0.0459. The structure of Mg0.50TiO(PO4) consists of infinite chains of corner-shared [TiO6] octahedra parallel to the c-axis, crosslinked by corner-shared [PO4] tetrahedra. These infinite chains have alternating short (1.74 Å) and long (2.26 Å) TiO bonds and are similar to those found in titanium oxyphosphate MII0.50TiO(PO4) (M2+ = Fe2+, Co2+, Ni2+, Cu2+, Zn2+). The magnesium atom is located in an antiprism between two [TiO6] octahedra. 31P MAS NMR showed only a single 31P resonance line, in a good agreement with the crystal structure. Raman and IR spectra show strong bands respectively at 765 and 815 cm−1, attributed to the vibration of TiOTiO bonds in the infinite chains. The gap due to the Oxygen-Titanium(IV) charge transfer is 3.37 eV.  相似文献   

15.
16.
Glasses with the nominal compositions of xWO325La2O3(75 − x)B2O3 (mol%) with x = 15, 25, and 50 were prepared using a conventional melt quenching method, and their structure and crystallization behavior were examined from Raman scattering spectra and X-ray diffraction analyses. The glasses are colorless in the visible light region and give the optical band gap energy of 3.49-3.61 eV. The glass transition and crystallization temperatures and the thermal stability against crystallization decrease with increasing WO3 content. The strong Raman bands at 840 and 940-960 cm−1 suggest that the main coordination state of W6+ ions in the glasses is isolated (WO4)2− tetrahedral units. The formation of WO6 octahedral units is also suggested in the glasses with high WO3 contents. The main crystallization mechanism in the glasses is the surface crystallization, and the glass of 50WO325La2O325B2O3 shows the crystallization of LaBWO6 single phase. The present study proposes that WO3La2O3B2O3 glasses and crystallized glasses are very interesting as optical functional materials.  相似文献   

17.
To go further in the comprehension of hydrogen desorption mechanisms from PECVD (Plasma Enhanced Chemical Vapour Deposited) silicon nitride, a method to determine the chemical composition of amorphous silicon nitride films using fast and non destructive characterization techniques has been developed. In particular, SiH, NH, SiSi and SiN bond concentrations are calculated from Fourier transform infra red spectroscopy, ellipsometry and mass measurement. Next, different PECVD silicon nitride films were annealed at 600 °C during 2 min. Results show that hydrogen desorption from PECVD silicon nitride depends on film mass density and main chemical reactions leading to hydrogen desorption are identified thanks to the determination of SiSi and SiN bond concentrations.  相似文献   

18.
Films consisting of Eu3+ β-diketonate complexes were deposited onto glassy substrates by means of the spin- and dip-coating techniques, using different ion/ligand ratios. Absorption spectroscopy in the infrared region revealed the typical stretching bands of the SiOSi and SiOH bonds of the inorganic matrix as well as bands relative to the CO and CH symmetric vibration of β-diketone (dibenzoylmethane). The films displayed UV-visible absorption band at 350 nm, attributed to the organic ligand. Luminescence properties were studied by photoluminescence spectroscopy. Upon ligand excitation, the emission spectra exhibited the characteristic bands of the Eu3+ ion corresponding to the transition from the excited state 5D0 to the ground state 7FJ. Scanning electron microscopy confirmed the formation of a film with average thickness ranging from 80 to 100 nm. The sol-gel process and the deposition techniques resulted in the effective formation of nanofilms, which opens up perspectives for their application in photonics.  相似文献   

19.
Co and Nd co-substituted Bi5Ti3FeO15 thin films were prepared on Pt/Ti/SiO2/Si substrates via metal organic decomposition method. The structural and multiferroic properties of the films were investigated. It was found that Co ions enter into the lattice and occupy the Fe site. The Bi4.15Nd0.85Ti3Fe0.5Co0.5O15 films simultaneously exhibit ferroelectric and ferromagnetic properties at room temperature, and its 2Pr and 2Mr are 38 μC/cm2 and 3 kA/m, respectively. Moreover, substitutions create local ferromagnetic order and antiferromagnetic order depending on whether the local bonding is FeOCo or FeOFe/CoOCo, respectively. The competing interaction of the ferromagnetic and antiferromagnetic phases results in an interesting magnetic behavior of the films.  相似文献   

20.
A new phase diagram is reported for the CaOAl2O3SiO2H2O (CASH) system at 200 °C. This system is rare in nature but has applications in cementing geothermal and deep oil wells. The phase diagram was constructed by synthesising a range of hydroceramics with CASH assemblages from oilwell cement, silica flour (quartz) and alumina (corundum). A hydroceramic is defined as any ceramic material incorporating water as H2O or OH. At 200 °C, gyrolite, hillebrandite, jaffeite, portlandite, quartz, 11 Å tobermorite, xonotlite, hibschite and katoite were observed as product phases. The mineral assemblages produced the following three-phase triangles in the CaOAl2O3SiO2 diagram: Gyr + Qtz + Xon; Crn + Tob + Xon; Crn + Hib + Xon; Crn + Hib + Jaf; Crn + Jaf + Kat; Hib + Jaf + Por; Hib + Jaf + Xon; and two reactions are found to be in progress at 200 °C. When alumina is present in the reaction mixture, the thermal stability of tobermorite is extended to higher temperature, and the crystallinity of tobermorite and xonotlite enhanced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号