首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The impact of high hydrostatic pressure (HP) treatment on protein aggregation and rheological properties of legume batters has been investigated. Gelatinisation/pasting and gelling profiles, rheological parameters and protein solubility of HP-hydrated chickpea (CP), green pea (GP) and soybean (SB) flours were determined. CP, GP and SB hydrated flours, at dough yield (DY) 160 and 200, were treated for 10 min at 0.1, 200, 350 or 450 MPa. Pressures of ≥350 MPa downward shifts gelatinisation temperatures in CP and GP regardless the hydration level. For all legume batters, HP provokes changes on the rheology of hydrated samples, particularly in softer batters (DY 200), leading to an increased stiff/solid character. Analysis of proteins extracted in different buffers revealed that pressures of >200 MPa induced the formation of urea-insoluble complexes, disulphide bonds and/or other strong protein aggregates. Although the extent of protein modification was dependent on the applied pressure, the results collected so far show that high HP can be used to improve the breadmaking functionality of CP, GP and SB batters.  相似文献   

2.
The uniaxial compression characteristics of papad dough (moisture content 62%, dry basis), made from blackgram flour as well as after incorporation of different types of cereal (rice, sorghum and wheat) flours at different levels (20 and 40%), were determined. The stress-strain data can be interrelated by a power law type equation. The sensory attributes (stickiness, firmness, elasticity and ease of flattening/rolling) were correlated with the energy for compression, deformability modulus and apparent biaxial elongational viscosity. Inelastic doughs resulted from the blackgram dough; doughs with 20% rice or wheat blends were also inelastic but sorghum samples were elastic. The deformability modulus for sorghum doughs were extremely high. The blackgram dough as well as the wheat blended doughs were the easiest doughs to roll/flatten. Blended dough consisting of wheat flour (at 20 and 40% level) or rice flour up to 20% level was suitable for making cereal-blended papad doughs.  相似文献   

3.
Microbial, physical and structural changes in high pressured wheat dough were studied as a function of pressure level (50-250 MPa) and holding time (1-4 min). Thereafter, selected conditions of high hydrostatic processing (HPP) were applied to bread dough and the technological quality of the obtained breads was studied. The effect of HPP on wheat dough was investigated by determining microbial population (total aerobic mesophilic bacteria, moulds and yeasts), color and mechanical and texture surface related dough parameters (cohesiveness, adhesiveness, hardness and stickiness). HPP reduced the endogenous microbial population of wheat dough from 104 colony forming units/g (CFU) to levels of 102 CFU. HPP treatment significantly (P < 0.05) increased dough hardness and adhesiveness, whereas treatment time reduced its stickiness. Scanning electron micrographs suggested that proteins were affected when subjected to pressure levels higher than 50 MPa, but starch modification required higher pressure levels. HPP treated yeasted doughs led to wheat breads with different appearance and technological characteristics; crumb acquired brownish color and heterogeneous cell gas distribution with increased hardness due to new crumb structure. This study suggests that high hydrostatic processing in the range 50-200 MPa could be an alternative technique for obtaining novel textured cereal based products.  相似文献   

4.
Selected cereals (rice and sorghum) and millets (finger millet and pearl millet) were steamed for 20 min at ambient pressure. The rheological properties of doughs, made from these steamed as well raw grain flours, were characterized in addition to examining their baking quality. The two-cycle compression test was employed and instrumental values were correlated with sensory attributes (color, aroma, taste, stickiness, chewiness, tearing strength, cohesiveness, and rollability) using principal component analysis (PCA). Rice doughs made from both raw as well as thermally treated flour imparted maximum hardness (96.6–99.3 N) and least cohesiveness (0.05–0.09) with highest stickiness values (105–110°) among all the dough samples at the same moisture content. Pearl millet and raw sorghum flour doughs possessed the least instrumental hardness, adhesiveness, and stickiness and were the easiest to flatten. The PCA biplot showed that sensory and instrumental cohesiveness formed a cluster on the left side on the x axis while shear force, and sensory attributes like tearing strength, chewiness, stickiness, and rollability formed another cluster on the other side of the axis. Raw rice and finger millet doughs were associated with the high extent of instrumental and sensory stickiness. Thermally treated pearl millet and sorghum doughs were the best followed by treated rice and finger millet samples to give the desirable dough characteristics, and were quite close to wheat chapathi in texture.  相似文献   

5.
Investigations were conducted on the viscoelastic properties and pasting characteristics of fermented maize with malted cereals and their suitability for infant feeding. A 3 × 3 × 2 factorial experimental design with malting time, cereal malt concentration and cereal type was used. Maize, millet, and sorghum malts were added to fermented maize to reducing its bulk density. Samples were analysed for their viscoelastic properties and pasting characteristics using Brabender Viscoamylograph. Sorghum malt in comparison to millet and maize malts was not effective in terms of lowering the hot and cold paste viscosities of the fermented maize. Maize and millet malts liquefied the dough considerably during both the hot and cold paste viscosities. The effect of 4‐day malted millet was most pronounced whilst the highest activity of maize malt was observed with the 3‐day malted flours. The addition of maize and millet malts to fermented maize were most effective in lowering the viscoelastic properties of the resulting porridges.  相似文献   

6.
Phytic acid was determined in cereal (brans, flours and milled wheat-products) and breads. The method was based on complexometric titration of residual iron (III) after phytic acid precipitation. The cereal flours showed values ranged between 3–4 mg/g for soft wheats, 9 mg/g for hard wheat and 22 mg/g for whole wheat. Corn, millet and sorghum flours reported a mean of 10 mg/g and oat, rice, rye and barley between 4 and 7 mg/g. Wheat brans had wide ranges (25–58 mg/g). The phytic acid for oat brans was half that of wheat bran (20 mg/g) and higher value (58 mg/g) than that for rice bran. The milling products (semolinas) from hard wheat exhibited 10 mg/g and soft wheat a mean of 23 mg/g. The breads made with single or mixture cereal flours exhibited ranges between 1.5 and 7.5 mg/g. The loss of phytic acid relative to unprocessed flours was between 20% for oat bread and 50% for white bread.  相似文献   

7.
E. Maforimbo 《LWT》2007,40(2):338-343
The effect of l-ascorbic acid (l-AA) on free sulfhydryl concentration (SH) was evaluated in soy-wheat composite dough from 100-500 (g/kg) soy flour substitution for wheat flour. Raw soy flour (RSF) and physically modified soy flours (PMSF1 and PMSF2) were used for the preparation of the composite dough with wheat flour. The two physically modified soy flours were prepared by steam flushing (PMSF2) and water boiling (PMSF1) of raw soy beans before flour preparation. Using a timer, dough blends were manually mixed (at approximately 60 rpm) to dough development time after which, dough was sampled for the estimation of free SH groups. l-AA (0.05% w/w) was mixed with the dough after dough development and the dough was sampled after 1 h of resting the dough. The results showed that l-AA (0.05% w/w) acted as a reducing agent by increasing SH levels in all soy-wheat dough blends (P<0.05). After 1 h of resting, soy-wheat composite dough without l-AA had lower concentrations of SH than that with l-AA. A positive correlation was shown between soy flour concentrations and SH concentration before and after dough resting. A negative correlation existed between l-AA consumption and SH concentration for RSF-wheat, PMSF1-wheat and PMSF2-wheat doughs. The results indicated that soy flour weakened wheat flour dough by increasing SH concentration and that l-AA could have a synergistic effect on the reduction of gluten proteins and thus weakening the dough.  相似文献   

8.
The effects of wheat flour fortification with two different molecular weight barley β-glucan isolates (1.00 × 105, BG-100 and 2.03 × 105, BG-200) on the rheological properties of dough and bread characteristics, using flours from two wheat cultivars that differ in their breadmaking quality, have been examined. The farinograph water absorption of doughs and the moisture content and water activity of the breads increased with increasing β-glucan content; the β-glucan isolate with the higher molecular weight (BG-200) exerted a greater effect than did BG-100. The addition of β-glucans to the dough formula increased the development time, the stability, the resistance to deformation and the extensibility of the poor breadmaking quality doughs, as well as the specific volumes of the respective breads, exceeding even that of the good breadmaking cultivar. Furthermore, the colour of the bread crumbs got darker and their structure became coarser, whereas the bread crumb firmness decreased with increasing level of β-glucan addition. Generally, the BG-200 was more effective in increasing the specific bread volume and reducing the crumb firmness, especially when used to fortify the poor breadmaking quality flour. The results further indicate a requirement for optimisation of the fortified doughs (level and molecular size of the β-glucan) to maximise bread quality attributes (loaf volume, texture, and staling events).  相似文献   

9.
为研究小米粉添加对面团流变特性和馒头制品质构特性的影响,分别选取不同粒径的粳性和糯性小米粉,利用损伤淀粉测定仪、快速黏度分析仪等对不同小米粉的损伤淀粉含量和糊化特性进行分析,通过流变仪测定小米面团的流变学特性,结合扫描电镜观察小米面团微观结构变化,并利用质构仪测定小米馒头的质构特性。结果表明:随着小米粉粒径的减小,多数品种小米粉(除冀谷39和汇华金米)损伤淀粉的碘吸收率增加;受直支比的影响,相同目数下,粳性小米粉的峰值黏度、谷值黏度、最终黏度和回生值较糯性小米粉大。流变学研究表明,除汇华金米和冀谷39,储能模量与损耗模量随角频率增加总体上升。扫描电镜观察发现小米粉的添加使面团结构更加松散。小米粉的添加会对馒头质构性质中硬度、咀嚼性和弹性等有一定程度的负面影响。主成分分析表明馒头咀嚼性、损伤淀粉、峰值黏度、谷值黏度、最终黏度、崩解值和回生值可作为区分粳糯品种和馒头品质特征的指标。  相似文献   

10.
In this study, the yields of exopolysaccharides (EPS) produced in situ during sourdough fermentations with Lactobacillus reuteri TMW 1.106 synthesizing glucan from sucrose were investigated under variation of the fermentation parameters dough yield (DY), pH, sucrose content and fermentation substrate. The obtained amounts of EPS after 1 day of fermentation were higher in softer (DY 500) than in firmer (DY 220) doughs. With the regulation of the pH to a constant value of 4.7, the optimum for EPS synthesis in liquid medium, the EPS production in dough also increased. The EPS yield could further be improved by additional sucrose fed-batch during fermentation. Fermentations with wheat flours, a rye-wheat mixture and rye bran with 10% sucrose as fermentation substrate showed, that the use of rye bran is a promising tool to get high dextran formation through L. reuteri even in the first 8 h of fermentation. Further, alternative production of oligosaccharides and organic acids from sucrose was investigated. Lactobacillus reuteri synthesized high amounts of acetic acid leading to low fermentation quotient values. In wheat doughs, the formation of maltooligosaccharides was observed. Confirmatory experiments with fructan producing Lactobacillus sanfranciscensis TMW 1.392 revealed the same trends with a few distinct differences, indicating that this approach is transferable to other EPS types and producers.  相似文献   

11.
The aim of the present study was to investigate the effect of yeast content and frozen storage (9 weeks at −40 °C) on the structural and rheological parameters, and fermentative activity of frozen sweet dough. Two types of dough were studied (to estimate dough shelf life): simple yeasted dough (SY) and double yeasted dough (DY). Fermentative activity (yeast viability, gassing power, and dough volume), rheological and textural parameters were assessed for frozen sweet doughs.These effects were explored by different and complementary methods: Fourier transform infrared (FTIR), dynamic rheology, texture profile analysis (TPA) and differential scanning calorimetry (DSC).The data showed that the longer the frozen storage time at −40 °C, the higher the decreased of frozen sweet dough quality. The rheological attributes such as hardness, ΔS, springiness, tan δ and yeast activity declined significantly during frozen storage. This modification led to lower specific volume of frozen sweet dough during proofing.The observed changes of the frozen sweet doughs rheological properties after thawing may be attributed to the damage on the gluten cross-linking, mainly produced by the ice crystallization during frozen storage. The storage effect was particularly concentrated in the first 27 days of storage.  相似文献   

12.
He Z  Huang Y  Li H  Qin G  Wang T  Yang J 《Meat science》2012,90(1):170-175
To investigate the effect of high-pressure (HP) treatment on lipid oxidation and fatty acid composition of intramuscular lipid in pork, the longissimus muscles from Rongchang (RC) pig were pressurized at 200, 350 and 500 MPa for 20 min at 20 °C prior to 7 days storage at 4 °C. The changes in TBARS number, lipid content and fatty acid composition of total intramuscular lipids, phospholipids, triglycerides and free fatty acids in untreated and HP treated samples were analyzed. HP treatment had no significant effect on the content and fatty acid composition of total lipids and triglycerides in the samples, but treatment at 350 MPa and above led to marked increases in TBARS values and lipolysis of partial phospholipids causing a correlative increase of free fatty acid content. A preferential hydrolysis for polyunsaturated fatty acids (PUFA) in phospholipids was observed, which resulted in the percentage of PUFA in phospholipids decreasing markedly and thereby that in free fatty acids increasing significantly.  相似文献   

13.
The content of proteic and nonproteic (free and protein-bound) tryptophan and of proteins in quinoa, wheat, rice, maize, barley, oat, rye, spelt, sorghum and millet flours was determined. Protein content and proteic tryptophan of quinoa were similar to that of wheat and spelt, but higher than in other cereals. Free tryptophan in quinoa flour showed values similar to those of wheat, oat and sorghum Kalblank, lower than those of barley, spelt and pearl millet, but higher than in rice, maize, rye, sorghum DK 34 – Alabama hybrid. In addition, nonproteic tryptophan appears bound both to water soluble proteins and to proteins soluble at pH 8.9. The results are discussed regarding the importance of the nonprotein tryptophan fraction, the only one able to enter the brain, that is more easily absorbed, so guarantees a greater amount available for uptake by the central nervous system.  相似文献   

14.
Challenges and opportunities of minor cereals with poor viscoelastic value deserve a special attention in breadmaking applications due to their unique nutritional components. In a preliminary stage, the suitability of oat, millet and sorghum in breadmaking was assessed in simple binary wheat flour matrices in which wheat flour was replaced from 0% to 60%. The research allowed the quantification of grains (up to 30% for millet and sorghum and up to 50% for oat of wheat flour replacement) to be incorporated into the binary blended matrices providing minimization of techno-functional impairment and sensory depreciation of breads. Combinations of gluten, vegetable fat and a commercial mix of surfactants, ascorbic acid and antistaling enzymes were used to make breads with 10% increased level of wheat flour replacement by single oat, millet and sorghum in binary mixed samples. The quality profile of binary mixtures of oat–wheat (60:40 w/w), millet–wheat (40:60 w/w) and sorghum–wheat (40:60 w/w) was significantly improved in terms of keepability during storage, mainly for oat–wheat blends which stale at a similar rate than 100% wheat breads. Overall acceptability of highly replaced wheat breads deserved higher scores for oat and sorghum composite breads (7/10) than control wheat breads (6/10). Oat, millet and sorghum represent a viable alternative to make aerated breads with mitigated technological and sensory constraints based on non-viscoelastic cereals.  相似文献   

15.
The formation and properties of wheat flour doughs   总被引:5,自引:0,他引:5  
Among the cereal flours, only wheat flour will form a viscoelastic dough when mixed with water. The viscoelasticity appears to be because the gluten proteins are water compatible and thus will swell and interact. The gluten protein's large molecular size and low charge density appear to allow them to interact by both hydrogen and hydrophobic bonds. Wheat flour doughs are also unique in their ability to retain gas. This property appears to result from a slow rate of gas diffusion in the dough. The third major unique property of wheat flour doughs is their ability to set in the oven during baking, and thereby to produce a rigid loaf of bread. Although not clearly understood, this appears to be a heat-induced crosslinking of the gluten proteins.  相似文献   

16.
Tartary buckwheat was subjected to hydrothermal treatments for minimising rutin loss in buckwheat-based foods by water addition. When native buckwheat flour was mixed with water for 60 min, the rutin content was distinctly reduced from 3.74 g/100 g to 0.31 g/100 g, increasing the amount of quercetin. However, the rutin content remained constant and quercetin was hardly detected in hydrothermally-treated buckwheat flour. Also, when noodles were prepared with wheat and buckwheat flours (7:3, w/w), the noodle samples containing hydrothermally-treated buckwheat flour, showed higher amounts of rutin (more than 0.83 g/100 g) than the control noodle with native buckwheat flour (0.27 g/100 g). In addition, the use of hydrothermally-treated buckwheat flour gave less pasting parameters and lower viscoelastic properties. The noodle dough with hydrothermally-treated buckwheat flour also had greater water absorption and development time during mixing while the elongation stress of the noodle dough was reduced.  相似文献   

17.
We studied the textural and rheological (viscoelastic) properties of fresh lafun dough, a fermented cassava product, and their changes during storage at 45 °C for 5 and 24 h, in order to determine after-cooking storability. Lafun flours were produced from three types of cassava varieties: seven improved white-fleshed varieties, seven improved provitamin A carotenoids (pVAC) varieties and two local white-fleshed varieties; and processed into lafun doughs. Pasting properties of the flours were assessed. Flours from local varieties had pasting profiles with highest viscosities, while pVAC flours had the lowest. The three types of cassava varieties varied significantly in most of their pasting properties. Four promising improved varieties were identified, based on high peak viscosity (55.8–61.5 P) and stiffer texture than local varieties during storage. Undesirable varieties were also found, which softened during storage instead of hardening. Optimum texture of lafun dough was obtained after 5 h of storage.  相似文献   

18.
Hard red winter wheat, oats, and pearl millet were germinated at 15°C for periods up to 14 days. Endosperm areas in kernels fractured with a razor blade and starches isolated from the malted flours were examined with a scanning electron microscope to determine the morphology of starch granules and the nature of α-amylolytic attack on granules. Free sugars content, damaged starch content, and α-amylase activity of the flours were determined to establish relationships between physical changes in the cereal grains and formation of α-amylase during germination. Starch granules in the three cereals were degraded during germination by α-amylase accompanied by production of free sugars and increases in the damaged starch of flours milled from the germinated grains. The cementing material embedding starch granules in endosperms of wheat and oats decreased and disappeared during germination; these changes were not obvious in germinated millet endosperm. Amorphous-appearing material seemed to cover starch granules in the endosperm of wheat and oats during later stages of germination, but were not observed in the isolated starch granules. Although wheat starch granules had the highest α-amylase activity, this enzymic degradation was less than expected. Enzymic attack was evidenced as channels or pits on the surfaces of wheat and millet starch granules. Compound oat starch granules were relatively resistant to enzymic attack and no evidence of erosion of the granule surface was observed; small granula were released from the compound granules during germination. The most extensive degradation was obtained with millet starch, appearing as discrete holes leading to the interior of the granule. Concentric shells were visible in the interior of wheat and millet starch granules, but were not observed in oat starch granules.  相似文献   

19.
Cereal grains, such as wheat, barley, rice, rye, oat, millet, sorghum, and corn, have been staples in human diets since ancient times. At present, there is a significant body of scientific evidence showing the health benefits of consuming whole grains in chronic disease prevention, particularly in regards to diabetes, cardiovascular disease, and cancer. The objective was to determine bioactive peptides in cereal grains that may prevent cardiovascular disease, cancer, inflammation, and diabetes. Bioactive peptides that may be obtained from cereal grains, particularly wheat, oat, barley, and rice, were identified. Bioactive peptides that play a role in chronic disease prevention have been found primarily in legumes and dairy products; although research connecting cereal grains with potential bioactive peptide activity is limited. In this review, 4 cereal grains, wheat, oat, barley, and rice, were evaluated for bioactive peptide potential using the BIOPEP database. In addition, research information was compiled for each grain regarding evidence about the effect of their proteins in prevention of chronic diseases. All 4 grains showed high occurrence frequencies of angiotensin‐converting enzyme‐inhibitor peptides (A = 0.239 to 0.511), as well as of dipeptidyl peptidase‐inhibitor and antithrombotic, antioxidant, hypotensive, and opioid activity. Wheat and rice proteins had anticancer sequences present. Wheat and barley showed the greatest diversity and abundance of potential biological activity among the cereal proteins. Further research needs to be conducted to learn how these biologically active peptide sequences are released from cereal grains. This study supports the notion that cereal grains are a nutritious part of a healthy diet by preventing chronic diseases.  相似文献   

20.
去皮高粱粉和粟米粉作面包用粉的替代物,以不同比例添加使用。胡芦巴胶部分替代面粉,替代率可达0.9%,研究了胡芦巴胶对流变特征及面包品质的影响。添加胶越多,生面团吸水量亦越高;添加胡芦巴胶后,生面团的稳定时间、断裂时间和机械耐力指数均有提高。按4∶1的面粉/高粱粉配方,添加0.6%胶可增大面包体积21.8%,而0.9%的胶添加量能增大面包体积21.38%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号