首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Market demand of agri-products is influenced by uncertain factors, such as weather, temperature, and customer preferences. In integrated agricultural supply chains, traditional inventory models are useless because of the stochastic demand and deteriorative characteristic of agri-products. This paper provides a method to determine the optimal replenishment policy of integrated agricultural supply chains with stochastic demand. In these EOQ/EPQ models, shortages are allowed and are backlogged if market demand is stochastic. The objective function is to minimize the total cost of the supply chain in the planning horizon. The total cost includes the ordering cost, the holding cost, the shortage cost and the purchasing cost. Thinking of the nonlinear relationship and dynamic forces in models, a system dynamic (SD) simulation model is constructed to find the optimal lot size and replenishment interval. Finally, an example is given to make a sensitivity analysis of the simulation model. Compared to traditional methods (such as equalize stochastic demand), the total cost decreases by 16.27% if the supply chains adopt the new replenishment policy. The results illustrated that the new replenishment policy (with intelligent method) is beneficial to help supply chain make decision scientifically. Moreover, the intelligent method can simulate stochastic demand perfectly, and it is effectively for solving the complicated and mathematically intractable replenishment problem.  相似文献   

2.
Ant colony optimization (ACO) has been successfully applied for combinatorial optimization problems, e.g., the travelling salesman problem (TSP), under stationary environments. In this paper, we consider the dynamic TSP (DTSP), where cities are replaced by new ones during the execution of the algorithm. Under such environments, traditional ACO algorithms face a serious challenge: once they converge, they cannot adapt efficiently to environmental changes. To improve the performance of ACO on the DTSP, we investigate a hybridized ACO with local search (LS), called Memetic ACO (M-ACO) algorithm, which is based on the population-based ACO (P-ACO) framework and an adaptive inver-over operator, to solve the DTSP. Moreover, to address premature convergence, we introduce random immigrants to the population of M-ACO when identical ants are stored. The simulation experiments on a series of dynamic environments generated from a set of benchmark TSP instances show that LS is beneficial for ACO algorithms when applied on the DTSP, since it achieves better performance than other traditional ACO and P-ACO algorithms.  相似文献   

3.
葛显龙  薛桂琴 《控制与决策》2019,34(6):1195-1202
针对城市配送过程中出现的交通限行和需求不确定性等问题,将配送周期划分为初始配送阶段和动态补货阶段,路径中包含枢纽型物流中心、配送型物流中心和客户,研究其共同构成的两级车辆配送路径优化问题.考虑到问题的动态性,提出前摄性需求配额策略及响应性补货策略,构建基于场景动态度的两级动态车辆路径问题数学模型.设计融合扫描算子的禁忌搜索算法,完成车辆初始阶段的配送路径优化;根据场景动态度,设计修复/更新性动态客户的响应策略,快速响应动态需求.最后,通过仿真算例验证模型和算法的有效性,实验结果表明,所提出的设计策略能够有效降低动态客户对低动态度应用场景初始路径的干扰,并简化高动态度场景下的路径优化复杂度.  相似文献   

4.
Ant Colony Optimization (ACO) is a Swarm Intelligence technique which inspired from the foraging behaviour of real ant colonies. The ants deposit pheromone on the ground in order to mark the route for identification of their routes from the nest to food that should be followed by other members of the colony. This ACO exploits an optimization mechanism for solving discrete optimization problems in various engineering domain. From the early nineties, when the first Ant Colony Optimization algorithm was proposed, ACO attracted the attention of increasing numbers of researchers and many successful applications are now available. Moreover, a substantial corpus of theoretical results is becoming available that provides useful guidelines to researchers and practitioners in further applications of ACO. This paper review varies recent research and implementation of ACO, and proposed a modified ACO model which is applied for network routing problem and compared with existing traditional routing algorithms.  相似文献   

5.
Managing inventory and service levels in a capacitated supply chain environment with seasonal demand requires appropriate selection and readjustment of replenishment decision variables. This study focuses on the dynamic adjustment of decision variables within supply chains using continuous-review reorder point (ROP) replenishment. A framework is proposed to adjust reorder points and lot sizes based on optimal settings within different regions of a seasonal demand cycle. This framework also includes the optimal timing of adjustments defining these regions. A discrete-event simulation model of a simple, capacity-constrained supply chain is developed and simulation–optimization experiments are performed, the objective being to minimize the total supply chain inventory subject to a target delivery service level. The performance of ROP systems with optimal static and optimal dynamic decision variable settings are compared using two different seasonal demand patterns. The results confirm that performance with dynamic decision variable adjustment is better. For a given delivery service level, average work-in-process inventory levels are almost the same for both systems. However average finished goods inventory levels decrease significantly and are more stable under dynamic adjustment. The practical implication is that both finished goods holding costs and maximum storage capacity requirements are reduced.  相似文献   

6.
This paper develops a deterministic replenishment model with multiple warehouses (one is an owned warehouse and others are rented warehouses) possessing limited storage capacity. In this model, the replenishment rate is infinite. The demand rate is a function of time and increases at a decreasing rate. The stocks of rented warehouses are transported to owned warehouse in continuous release pattern. The model allows shortages in owned warehouse and permits part of the backlogged shortages to turn into lost sales—which is assumed to be a function of the currently backlogged amount. The solution procedure for finding the optimal replenishment policy is shown. As a special case of the model, the corresponding models with completely backlogged shortages and without shortages are also presented. The models are illustrated with the help of numerical examples. Sensitivity analysis of parameters is given in graphical form.Scope and purposeIn practical inventory management, there exist many factors like an attracted price discount for bulk purchase, etc. to make retailers buy goods more than the capacity of their owned warehouse. In this case, retailers will need to rent other warehouses or to rebuild a new warehouse. However, from economical point of views, they usually choose to rent other warehouses. If there are multiple warehouses available, an important problem faced by the retailers is which warehouses to be selected to hold items replenished, when to replenish as well as what size to replenish. For such a problem, the existing two-warehouse models, based on an unrealistic assumption that the rented warehouse has unlimited storage capacity, presented some procedures for determining the optimal replenishment policy. This paper extends the existing two-warehouse models in three directions. Firstly, the traditional two-warehouse models assumed the storage capacity of the rented warehouse unlimited. The present paper relaxes this impractical assumption and considers the situation with multiple rented warehouses having a limited capacity. Secondly, the traditional two-warehouse models considered a constant demand rate or a linearly increasing demand rate. In this model, the demand rate varies over time and increases at a decreasing rate, which implies an increasing market going to saturation. Thirdly, we extend the two-warehouse models to the case with partially backlogged shortages. The purpose of this paper is to build a multi-warehouse replenishment model to help decision-makers solve the problem of which warehouses to be chosen to store items replenished and how to replenish.  相似文献   

7.
Traditional ant colony optimization (ACO) algorithms have difficulty in addressing dynamic optimization problems (DOPs). This is because once the algorithm converges to a solution and a dynamic change occurs, it is difficult for the population to adapt to a new environment since high levels of pheromone will be generated to a single trail and force the ants to follow it even after a dynamic change. A good solution to address this problem is to increase the diversity via transferring knowledge from previous environments to the pheromone trails using immigrants schemes. In this paper, an ACO framework for dynamic environments is proposed where different immigrants schemes, including random immigrants, elitism-based immigrants, and memory-based immigrants, are integrated into ACO algorithms for solving DOPs. From this framework, three ACO algorithms, where immigrant ants are generated using the aforementioned immigrants schemes and replace existing ants in the current population, are proposed and investigated. Moreover, two novel types of dynamic travelling salesman problems (DTSPs) with traffic factors, i.e., under random and cyclic dynamic environments, are proposed for the experimental study. The experimental results based on different DTSP test cases show that each proposed algorithm performs well on different environmental cases and that the proposed algorithms outperform several other peer ACO algorithms.  相似文献   

8.
An inventory system for perishable items with limited replenishment capacity is introduced in this paper. The demand rate depends on the stock quantity displayed in the store as well as the sales price. With the goal to realise profit maximisation, an optimisation problem is addressed to seek for the optimal joint dynamic pricing and replenishment policy which is obtained by solving the optimisation problem with Pontryagin’s maximum principle. A joint mixed policy, in which the sales price is a static decision variable and the replenishment rate remains to be a dynamic decision variable, is presented to compare with the joint dynamic policy. Numerical results demonstrate the advantages of the joint dynamic one, and further show the effects of different system parameters on the optimal joint dynamic policy and the maximal total profit.  相似文献   

9.
Inventory routing problem considers inventory allocation and routing problems simultaneously, in which the replenishment policies and routing arrangement are determined by the supplier under the vendor managed inventory mode. What we consider here is a periodic inventory routing problem that once the delivery time, quantity and routing are determined, they will remain the same in the following periods. The problem is modeled concisely, and then it is decomposed into two subproblems, inventory problem and vehicle routing problem. The inventory problem is solved by proposing a local search method, which is achieved by four operators on delivery quantity and retailer’s demand. Insertion operator aims to insert a new replenishment point of a retailer while removal operator is to remove a replenishment point. Besides, addition operator is adopted as an assistant tool, and crossover operator is proposed for some special cases. We also propose a tabu search method to solve the routing problem. Finally, the computational results show that the method is efficient and stable.  相似文献   

10.
To the best of our knowledge, this paper describes the first ant colony optimization (ACO) approach applied to nurse scheduling, analyzing a dynamic regional problem which is currently under discussion at the Vienna hospital compound. Each day, pool nurses have to be assigned for the following days to public hospitals while taking into account a variety of soft and hard constraints regarding working date and time, working patterns, nurses qualifications, nurses’ and hospitals’ preferences, as well as costs. Extensive computational experiments based on a four week simulation period were used to evaluate three different scenarios varying the number of nurses and hospitals for six different hospitals’ demand intensities. The results of our simulations and optimizations reveal that the proposed ACO algorithm achieves highly significant improvements compared to a greedy assignment algorithm.  相似文献   

11.
In this paper, an ant colony optimization (ACO) algorithm is proposed for operations of steady flow gas pipeline. The system is composed of compressing stations linked by pipelegs. The decisions variables are chosen to be the operating turbocompressor number and the discharge pressure for each compressing station. The objective function is the power consumed in the system by these stations. Until now, essentially gradient-based procedures and dynamic programming have been applied for solving this no convex problem. The main original contribution proposed, in this paper, is that we use an ACO algorithm for this problem. This method was applied to real life situation. The results are compared with those obtained by employing dynamic programming method. We obtain that the ACO is an interesting way for the gas pipeline operation optimization.  相似文献   

12.
We study the problem of dynamic pricing, promotion and replenishment for a deteriorating item subject to the supplier's trade credit and retailer's promotional effort. In this paper we adopt a price- and time-dependent demand function to model the finite time horizon inventory for deteriorating items. The objective of this paper is to determine the optimal retail price, the promotional effort and the replenishment quantity so that the net profit is maximized. We discuss the properties and develop an algorithm for solving the problem described. The numerical analyses show that an appropriate promotion policy can benefit the retailer and that the promotion policy is important, especially for deteriorating items. Furthermore dynamic decision-making is shown to be superior to fixed decision-making in terms of profit maximization. Some special cases, such as with no credit period and for non-deteriorating items, are discussed as is the influence of the time-varying demand, the rate of deterioration and the credit period on the retailer behavior.  相似文献   

13.
机械手臂是一个复杂、强耦合、非线性的系统,其运动学逆问题的求解常常是一个多解或无解的过程,传统方法求解/较为困难,本文将其转化为连续性空间的优化问题,并应用蚁群优化算法对其进行求解。蚁群优化算法是随机搜索、全局优化的算法,不仅能够很好地解决任意的优化组合问题,还能较好地解决连续性空间解的优化问题。通过MATLAB仿真求解,证实了该算法的优越性,分析了参数的设置对蚁群优化算法性能的影响。  相似文献   

14.
Pricing is a major strategy for a retailer to obtain its maximum profit. Furthermore, under most market behaviors, one can easily find that a vendor provides a credit period (for example 30 days) for buyers to stimulate the demand, boost market share or decrease inventories of certain items. Therefore, in this paper, we establish a deterministic economic order quantity model for a retailer to determine its optimal selling price, replenishment number and replenishment schedule with fluctuating demand under two levels of trade credit policy. A particle swarm optimization is coded and used to solve the mixed-integer nonlinear programming problem by employing the properties derived in this paper. Some numerical examples are used to illustrate the features of the proposed model.  相似文献   

15.
A major cause of supply chain deficiencies is the bullwhip effect, which implies that demand variability amplifies as one moves upstream in supply chains. Smoothing inventory decision rules have been recognized as the most powerful approach to counteract the bullwhip effect. Although several studies have evaluated these smoothing rules with respect to several demand processes, focusing mainly on the smoothing order-up-to (OUT) replenishment rule, less attention has been devoted to investigate their effectiveness in seasonal supply chains. This research addresses this gap by investigating the impact of the smoothing OUT on the seasonal supply chain performances. A simulation study has been conducted to evaluate and compare the smoothing OUT with the traditional OUT (no smoothing), both integrated with the Holt-Winters (HW) forecasting method, in a four-echelon supply chain experiences seasonal demand modified by random variation. The results show that the smoothing OUT replenishment rule is superior to the traditional OUT, in terms of the bullwhip effect, inventory variance ratio and average fill rate, especially when the seasonal cycle is small. In addition, the sensitivity analysis reveals that employing the smoothing replenishment rules reduces the impact of the demand parameters and the poor selection of the forecasting parameters on the ordering and inventory stability. Therefore, seasonal supply chain managers are strongly recommended to adopt the smoothing replenishment rules. Further managerial implications have been derived from the results.  相似文献   

16.
对运输能力受限条件下的跨单元调度问题进行分析, 提出一种基于动态决策块和蚁群优化 (Ant colony optimization, ACO) 的超启发式方法, 同时解决跨单元生产调度和运输调度问题. 在传统超启发式方法的基础上, 采用动态决策块策略, 通过蚁群算法合理划分决策块, 并为决策块选择合适的规则. 实验表明, 采用动态决策块策略的超启发式方法比传统的超启发式方法具有更好的性能, 本文所提的方法在最小化加权延迟总和目标方面有较好的优化能力 并且具有较高的计算效率.  相似文献   

17.
基于产品非立即变质的特征,构建需求依赖于变质时间的多品种联合补货库存模型,目标是使单位时间内的总成本最小.由于联合补货问题是NP难题,且考虑变质使问题变得更加复杂,针对这一难点,采用一种截断泰勒级数的方法对目标函数的指数项进行简化,提出一种基于定界的启发式算法求解模型,并通过数值案例验证算法的有效性和实用性.最后对主要参数的敏感性进行分析,为非立即变质品的零售商在实施联合补货时提供有益的管理建议.  相似文献   

18.
In this research, we deal with VMI (Vendor Managed Inventory) problem where one supplier is responsible for managing a retailer’s inventory under unstable customer demand situation. To cope with the nonstationary demand situation, we develop a retrospective action-reward learning model, a kind of reinforcement learning techniques, which is faster in learning than conventional action-reward learning and more suitable to apply to the control domain where rewards for actions vary over time. The learning model enables the inventory control to become situation reactive in the sense that replenishment quantity for the retailer is automatically adjusted at each period by adapting to the change in customer demand. The replenishment quantity is a function of compensation factor that has an effect of increasing or decreasing the replenishment amount. At each replenishment period, a cost-minimizing compensation factor value is chosen in the candidate set. A simulation based experiment gave us encouraging results for the new approach.  相似文献   

19.
Traditional wireless sensor networks (WSNs) with one static sink node suffer from the well-known hot spot problem, that of sensor nodes near the static sink bear more traffic load than outlying nodes. Thus, the overall network lifetime is reduced due to the fact some nodes deplete their energy reserves much faster compared to the rest. Recently, adopting sink mobility has been considered as a good strategy to overcome the hot spot problem. Mobile sink(s) physically move within the network and communicate with selected nodes, such as cluster heads (CHs), to perform direct data collection through short-range communications that requires no routing. Finding an optimal mobility trajectory for the mobile sink is critical in order to achieve energy efficiency. Taking hints from nature, the ant colony optimization (ACO) algorithm has been seen as a good solution to finding an optimal traversal path. Whereas the traditional ACO algorithm will guide ants to take a small step to the next node using current information, over time they will deviate from the target. Likewise, a mobile sink may communicate with selected node for a relatively long time making the traditional ACO algorithm delays not suitable for high real-time WSNs applications. In this paper, we propose an improved ACO algorithm approach for WSNs that use mobile sinks by considering CH distances. In this research, the network is divided into several clusters and each cluster has one CH. While the distance between CHs is considered under the traditional ACO algorithm, the mobile sink node finds an optimal mobility trajectory to communicate with CHs under our improved ACO algorithm. Simulation results show that the proposed algorithm can significantly improve wireless sensor network performance compared to other routing algorithms.  相似文献   

20.

Mobile robots can be applied to a wide range of problems, and the demand for these applications has risen in recent years, increasing interest in the study of mobile robotics. Many studies have examined the path planning problem, one of the most important issues in mobile robotics. However, the grid paths found by traditional planners are often not the true shortest paths or are not smooth because their potential headings are artificially constrained to multiples of 45 degrees. These paths are unfit for application to mobile robots because the high number of heading changes increases the energy required to move the mobile robot. Some studies have proposed a post-processing step to smooth the grid path. However, in this case, the post-smoothed path may not necessarily find the true shortest path because the post-smoothed path is still constrained to headings of multiples of 45 degrees. This study attempts to develop a global path planner that can directly find an optimal and smoother path without post-processing to smooth the path. We propose a heterogeneous-ants-based path planner (HAB-PP) as a global path planner to overcome the shortcomings mentioned above. The HAB-PP was created by modifying and optimizing the global path planning procedure from the ant colony optimization (ACO) algorithm. The proposed algorithm differs from the traditional ACO path planning algorithm in three respects: modified transition probability function for moving ants, modified pheromone update rule, and heterogeneous ants. The simulation results demonstrate the effectiveness of the HAB-PP.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号