首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Engineering with Computers - An efficient numerical algorithm based on the Laguerre wavelets collocation technique for numerical solutions of a class of Thomas–Fermi boundary value problems,...  相似文献   

3.
4.
In this paper, a discontinuous Galerkin method for the stochastic Cahn-Hilliard equation with additive random noise, which preserves the conservation of mass, is investigated. Numerical analysis and error estimates are carried out for the linearized stochastic Cahn-Hilliard equation. The effects of the noises on the accuracy of our scheme are also presented. Numerical examples simulated by Monte Carlo method for both linear and nonlinear stochastic Cahn-Hilliard equations are presented to illustrate the convergence rate and validate our conclusion.  相似文献   

5.
《国际计算机数学杂志》2012,89(14):3093-3111
In this paper, to find an approximate solution of general linear Fredholm integro-differential–difference equations (FIDDEs) under the initial-boundary conditions in terms of the Bessel polynomials, a practical matrix method is presented. The idea behind the method is that it converts FIDDEs to a matrix equation which corresponds to a system of linear algebraic equations and is based on the matrix forms of the Bessel polynomials and their derivatives by means of collocation points. The solutions are obtained as the truncated Bessel series in terms of the Bessel polynomials J n (x) of the first kind defined in the interval [0, ∞). The error analysis and the numerical examples are included to demonstrate the validity and applicability of the technique.  相似文献   

6.
The main purpose of this paper is to give the numerical integration scheme for a fast Petrov–Galerkin method for solving the generalized airfoil equation, considered in a recent paper (Cai, J. Complex. 25:420–436, 2009). This scheme leads to a fully discrete sparse linear system. We show that it requires a nearly linear computational cost to get this system, and the approximate solution of the resulting linear system preserves the optimal convergent order. Numerical experiments are presented to confirm the theoretical estimates.  相似文献   

7.
An approximation method is developed for the solution of high-order non-linear Volterra–Fredholm integro-differential (NVFID) equations under the mixed conditions. The approach is based on the orthogonal Chebyshev polynomials. The operational matrices of integration and product together with the derivative operational matrix are presented and are utilized to reduce the computation of Volterra–Fredholm integro-differential equations to a system of non-linear algebraic equations. Numerical examples illustrate the pertinent features of the method.  相似文献   

8.
This paper proposes a novel numerical method, that is, discontinuous Legendre wavelet Galerkin technique for solving reaction–diffusion equation (RDE). Specifically, variational formulation and corresponding numerical fluxes of this type equation are devised by utilizing the advantages of both Legendre wavelet bases and discontinuous Galerkin approach. Furthermore, adaptive algorithm, stability and error analysis of this method have been discussed. Especially, the distinctive features of the presented approach are easy to cope with a variety of boundary conditions and able to effectively approximate solution of the RDE with less execution and storage space. Finally, numerical tests affirm better accuracy for a range of benchmark problems and demonstrate the validity and utility of this approach.  相似文献   

9.
10.
Solving block-tridiagonal systems is one of the key issues in numerical simulations of many scientific and engineering problems. Non-zero elements are mainly concentrated in the blocks on the main diagonal for most block-tridiagonal matrices, and the blocks above and below the main diagonal have little non-zero elements. Therefore, we present a solving method which mixes direct and iterative methods. In our method, the submatrices on the main diagonal are solved by the direct methods in the iteration processes. Because the approximate solutions obtained by the direct methods are closer to the exact solutions, the convergence speed of solving the block-tridiagonal system of linear equations can be improved. Some direct methods have good performance in solving small-scale equations, and the sub-equations can be solved in parallel. We present an improved algorithm to solve the sub-equations by thread blocks on GPU, and the intermediate data are stored in shared memory, so as to significantly reduce the latency of memory access. Furthermore, we analyze cloud resources scheduling model and obtain ten block-tridiagonal matrices which are produced by the simulation of the cloud-computing system. The computing performance of solving these block-tridiagonal systems of linear equations can be improved using our method.  相似文献   

11.
Some of mathematical physics models deal with nonlinear integral equations such as diffraction problems, scattering in quantum mechanics, conformal mapping and etc. In fact, analytically solving such nonlinear integral equations is usually difficult, therefore, it is necessary to propose proper numerical methods. In this paper, an efficient and accurate computational method based on the Wilson wavelets and collocation method is proposed to solve a class of nonlinear Fredholm–Hammerstein integral equations. In the proposed method, Kumar and Sloan scheme is used. Convergence of the Wilson expansion is investigated and also the error analysis of the proposed method is proved. Some numerical examples are provided to demonstrate the accuracy and efficiency of the method.  相似文献   

12.

Distributed fractional derivative operators can be used for modeling of complex multiscaling anomalous transport, where derivative orders are distributed over a range of values rather than being just a fixed integer number. In this paper, we consider the space-time Petrov–Galerkin spectral method for a two-dimensional distributed-order time-fractional fourth-order partial differential equation. By applying a proper Gauss-quadrature rule to discretize the distributed integral operator, the problem is converted to a multi-term time-fractional equation. Then, the proposed method for solving the obtained equation is based on using Jacobi polyfractonomial, which are eigenfunctions of the first kind fractional Sturm–Liouville problem (FSLP), as temporal basis and Legendre polynomials for the spatial discretization. The eigenfunctions of the second kind FSLP are used as temporal basis in test space. This approach leads to finding the numerical solution of the problem through solving a system of linear algebraic equations. Finally, we provide some examples with smooth solutions and finite regular solutions to numerically demonstrate the efficiency, accuracy, and exponential convergence of the proposed method.

  相似文献   

13.
We investigate a novel method for the numerical solution of two-dimensional time-dependent convection–diffusion–reaction equations with nonhomogeneous boundary conditions. We first approximate the equation in space by a stable Gaussian radial basis function (RBF) method and obtain a matrix system of ODEs. The advantage of our method is that, by avoiding Kronecker products, this system can be solved using one of the standard methods for ODEs. For the linear case, we show that the matrix system of ODEs becomes a Sylvester-type equation, and for the nonlinear case we solve it using predictor–corrector schemes such as Adams–Bashforth and implicit–explicit (IMEX) methods. This work is based on the idea proposed in our previous paper (2016), in which we enhanced the expansion approach based on Hermite polynomials for evaluating Gaussian radial basis function interpolants. In the present paper the eigenfunction expansions are rebuilt based on Chebyshev polynomials which are more suitable in numerical computations. The accuracy, robustness and computational efficiency of the method are presented by numerically solving several problems.  相似文献   

14.
15.

Matrices representations of integrations of wavelets have a major role to obtain approximate solutions of integral, differential and integro-differential equations. In the present work, operational matrix representation of rth integration of Jacobi wavelets is introduced and to find these operational matrices, all details of the processes are demonstrated for the first time. Error analysis of offered method is also investigated in present study. In the planned method, approximate solutions are constructed with the truncated Jacobi wavelets series. Approximate solutions of the modified Camassa–Holm equation and Degasperis–Procesi equation linearized using quasilinearization technique are obtained by presented method. Applicability and accuracy of presented method is demonstrated by examples. The proposed method is also convergent even when a minor number of grid points. The numerical results obtained by offered technique are compatible with those in the literature.

  相似文献   

16.
We study the applicability of the discontinuous Petrov–Galerkin (DPG) variational framework for thin-body problems in structural mechanics. Our numerical approach is based on discontinuous piecewise polynomial finite element spaces for the trial functions and approximate, local computation of the corresponding ‘optimal’ test functions. In the Timoshenko beam problem, the proposed method is shown to provide the best approximation in an energy-type norm which is equivalent to the L2-norm for all the unknowns, uniformly with respect to the thickness parameter. The same formulation remains valid also for the asymptotic Euler–Bernoulli solution. As another one-dimensional model problem we consider the modelling of the so called basic edge effect in shell deformations. In particular, we derive a special norm for the test space which leads to a robust method in terms of the shell thickness. Finally, we demonstrate how a posteriori error estimator arising directly from the discontinuous variational framework can be utilized to generate an optimal hp-mesh for resolving the boundary layer.  相似文献   

17.
A Taylor collocation method is presented for numerically solving the system of high-order linear Fredholm–Volterra integro-differential equations in terms of Taylor polynomials. Using the Taylor collocations points, the method transforms the system of linear integro-differential equations (IDEs) and the given conditions into a matrix equation in the unknown Taylor coefficients. The Taylor coefficients can be found easily, and hence the Taylor polynomial approach can be applied. This method is also valid for the systems of differential and integral equations. Numerical examples are presented to illusturate the accuracy of the method. The symbolic algebra program Maple is used to prove the results.  相似文献   

18.
With a combined compact difference scheme for the spatial discretization and the Crank–Nicolson scheme for the temporal discretization, respectively, a high-order alternating direction implicit method (ADI) is proposed for solving unsteady two dimensional convection–diffusion equations. The method is sixth-order accurate in space and second-order accurate in time. The resulting matrix at each ADI computation step corresponds to a triple-tridiagonal system which can be effectively solved with a considerable saving in computing time. In practice, Richardson extrapolation is exploited to increase the temporal accuracy. The unconditional stability is proved by means of Fourier analysis for two dimensional convection–diffusion problems with periodic boundary conditions. Numerical experiments are conducted to demonstrate the efficiency of the proposed method. Moreover, the present method preserves the higher order accuracy for convection-dominated problems.  相似文献   

19.
An embedded diagonally implicit Runge–Kutta Nyström (RKN) method is constructed for the integration of initial-value problems for second-order ordinary differential equations possessing oscillatory solutions. This embedded method is derived using a three-stage diagonally implicit RKN method of order four within which a third-order three stage diagonally implicit RKN method is embedded. We demonstrate how this system can be solved, and by an appropriate choice of free parameters, we obtain an optimized RKN(4,3) embedded algorithm. We also examine the intervals of stability and show that the method is strongly stable within an appropriate region of stability and is thus suitable for oscillatory problems by applying the method to the test equation y″=?ω2 y, ω>0. Necessary and sufficient conditions are given for this method to possess non-vanishing intervals of periodicity, for the fourth-order method. Finally, we present the coefficients of the method optimized for small truncation errors. This new scheme is likely to be efficient for the numerical integration of second-order differential equations with periodic solutions, using adaptive step size.  相似文献   

20.
A new efficient Chebyshev–Petrov–Galerkin (CPG) direct solver is presented for the second order elliptic problems in square domain where the Dirichlet and Neumann boundary conditions are considered. The CPG method is based on the orthogonality property of the kth-derivative of the Chebyshev polynomials. The algorithm differs from other spectral solvers by the high sparsity of the coefficient matrices: the stiffness and mass matrices are reduced to special banded matrices with two and four nonzero diagonals respectively. The efficiency and the spectral accuracy of CPG method have been validated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号