首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A set S of vertices of a graph G is a dominating set for G if every vertex of G is adjacent to at least one vertex of S. The domination number γ(G), of G, is the minimum cardinality of a dominating set in G. Moreover, if the maximum degree of G is Δ, then for every positive integer k≤Δ, the set S is a k-dominating set in G if every vertex outside of S is adjacent to at least k vertices of S. The k-domination number of G, denoted by γ k (G), is the minimum cardinality of a k-dominating set in G. A map f: V→<texlscub>0, 1, 2</texlscub>is a Roman dominating function for G if for every vertex v with f(v)=0, there exists a vertex uN(v) such that f(u)=2. The weight of a Roman dominating function is f(V)=∑ uV f(u). The Roman domination number γR(G), of G, is the minimum weight of a Roman dominating function on G. In this paper, we obtain that for any two graphs G and H, the k-domination number of the Cartesian product of G and H is bounded below by γ(G k (H)/2. Also, we obtain that the domination number of Cartesian product of G and H is bounded below by γ(GR(H)/3.  相似文献   

2.
A subset S of vertices of a graph G is k-dominating if every vertex not in S has at least k neighbours in S. The k-domination number γ k (G) is the minimum cardinality of a k-dominating set of G, and α(G) denotes the cardinality of a maximum independent set of G. Brook's well-known bound for the chromatic number χ and the inequality α(G)≥n(G)/χ(G) for a graph G imply that α(G)≥n(G)/Δ(G) when G is non-regular and α(G)≥n(G)/(Δ(G)+1) otherwise. In this paper, we present a new proof of this property and derive some bounds on γ k (G). In particular, we show that, if G is connected with δ(G)≥k then γ k (G)≤(Δ(G)?1)α(G) with the exception of G being a cycle of odd length or the complete graph of order k+1. Finally, we characterize the connected non-regular graphs G satisfying equality in these bounds and present a conjecture for the regular case.  相似文献   

3.
A vertex u in a digraph G = (VA) is said to dominate itself and vertices v such that (uv) ∈ A. For a positive integer k, a k-tuple dominating set of G is a subset D of vertices such that every vertex in G is dominated by at least k vertices in D. The k-tuple domination number of G is the minimum cardinality of a k-tuple dominating set of G. This paper deals with the k-tuple domination problem on generalized de Bruijn and Kautz digraphs. We establish bounds on the k-tuple domination number for the generalized de Bruijn and Kautz digraphs and we obtain some conditions for the k-tuple domination number attaining the bounds.  相似文献   

4.
Let G(k, n) be the set of simple graphs (i.e. without multiple edges or loops) that have n vertices and the minimum degree of vertices is k. The Randi? index of a graph G is: , where δu is the degree of vertex u and the summation extends over all edges (uv) of G. Using linear programming, we find the extremal graphs or give good bounds for this index when the number nk of vertices of degree kis n?k+t, for 0tk and kn/2. We also prove that for nkn?k, (kn/2) the minimum value of the Randi? index is attained for the graph .  相似文献   

5.
《国际计算机数学杂志》2012,89(9):1918-1935
Let G=(V, E) be a simple connected graph and k be a fixed positive integer. A vertex w is said to be a k-neighbourhood-cover (kNC) of an edge (u, v) if d(u, w)≤k and d(v, w)≤k. A set C ? V is called a kNC set if every edge in E is kNC by some vertices of C. The decision problem associated with this problem is NP-complete for general graphs and it remains NP-complete for chordal graphs. In this article, we design an O(n) time algorithm to solve minimum kNC problem on interval graphs by using a data structure called interval tree.  相似文献   

6.
The distance-two labelling problem of graphs was proposed by Griggs and Roberts in 1988, and it is a variation of the frequency assignment problem introduced by Hale in 1980. An L(2, 1)-labelling of a graph G is an assignment of non-negative integers to the vertices of G such that vertices at distance two receive different numbers and adjacent vertices receive different and non-consecutive integers. The L(2, 1)-labelling number of G, denoted by λ(G), is the smallest integer k such that G has a L(2, 1)-labelling in which no label is greater than k.

In this work, we study the L(2, 1)-labelling problem on block graphs. We find upper bounds for λ(G) in the general case and reduce those bounds for some particular cases of block graphs with maximum clique size equal to 3.  相似文献   

7.
《国际计算机数学杂志》2012,89(10):2103-2108
A subset F of vertices of a graph G is called a vertex cover Pk set if every path of order k in G contains at least one vertex from F. Denote by ψk(G) the minimum cardinality of a vertex cover Pk set in G. The vertex cover Pk (VCPk) problem is to find a minimum vertex cover Pk set. It is easy to see that the VCP2 problem corresponds to the well-known vertex cover problem. In this paper, we restrict our attention to the VCP4 problem in cubic graphs. The paper proves that the VCP4 problem is NP-hard for cubic graphs. Further, we give sharp lower and upper bounds on ψ4(G) for cubic graphs and propose a 2-approximation algorithm for the VCP4 problem in cubic graphs.  相似文献   

8.
Let G=(V, E) be a graph of order n and let B(D) be the set of vertices in V ? D that have a neighbour in the set D. The differential of a set D is defined as ? (D)=|B(D)|?|D| and the differential of a graph to equal the maximum value of ?(D) for any subset D of V. In this paper we obtain several tight bounds for the differential of strong product graphs. In particular, we investigate the relationship between the differential of this type of product graphs and various parameters in the factors of the product.  相似文献   

9.
The (k−1)-fault diameter Dk(G) of a k-connected graph G is the maximum diameter of GF for any FV(G) with |F|<k. Krishnamoorthy and Krishnamurthy first proposed this concept and gave Dκ(G1)+κ(G2)(G1×G2)?Dκ(G1)(G1)+Dκ(G2)(G2) when κ(G1×G2)=κ(G1)+κ(G2), where κ(G) is the connectivity of G. This paper gives a counterexample to this bound and establishes Dk1+k2(G1×G2)?Dk1(G1)+Dk2(G2)+1 for any ki-connected graph Gi and ki?1 for i=1,2.  相似文献   

10.
《国际计算机数学杂志》2012,89(8):1680-1691
Let G be a graph with vertex set V(G). Let n, k, d be non-negative integers such that n+2k+d≤|V(G)|?2 and |V(G)|?n?d are even. A matching which saturates exactly |V(G)|?d vertices is called a defect-d matching of G. If when deleting any n vertices the remaining subgraph contains a matching of k edges and every k-matching can be extended to a defect-d matching, then G is said to be an (n, k, d)-graph. We present an algorithm to determine (0, 1, d)-graphs with d constraints. Moreover, we solve the problem of augmenting a bipartite graph G=(B, W) to be a (0, 1, d)-graph by adding fewest edges, where d=∥B|?|W∥. The latter problem is applicable to the job assignment problem, where the number of jobs does not equal the number of persons.  相似文献   

11.
《国际计算机数学杂志》2012,89(10):2212-2225
A Hamiltonian cycle C=? u 1, u 2, …, u n(G), u 1 ? with n(G)=number of vertices of G, is a cycle C(u 1; G), where u 1 is the beginning and ending vertex and u i is the ith vertex in C and u i u j for any ij, 1≤i, jn(G). A set of Hamiltonian cycles {C 1, C 2, …, C k } of G is mutually independent if any two different Hamiltonian cycles are independent. For a hamiltonian graph G, the mutually independent Hamiltonianicity number of G, denoted by h(G), is the maximum integer k such that for any vertex u of G there exist k-mutually independent Hamiltonian cycles of G starting at u. In this paper, we prove that h(B n )=n?1 if n≥4, where B n is the n-dimensional bubble-sort graph.  相似文献   

12.
A k-adjacent vertex distinguishing edge colouring or a k-avd-colouring of a graph G is a proper k-edge colouring of G such that no pair of adjacent vertices meets the same set of colours. The avd-chromatic number, denoted by χ′a(G), is the minimum number of colours needed in an avd-colouring of G. It is proved that for any connected 3-colourable Hamiltonian graph G, we have χ′a(G)≤Δ+3.  相似文献   

13.
A k -container C(u,v) of a graph G is a set of k disjoint paths between u and v. A k-container C(u,v) of G is a k * -container if it contains all vertices of G. A graph G is k * -connected if there exists a k *-container between any two distinct vertices of G. Therefore, a graph is 1*-connected (respectively, 2*-connected) if and only if it is Hamiltonian connected (respectively, Hamiltonian). A graph G is super spanning connected if there exists a k *-container between any two distinct vertices of G for every k with 1≤kκ(G) where κ(G) is the connectivity of G. A bipartite graph G is k * -laceable if there exists a k *-container between any two vertices from different partite set of G. A bipartite graph G is super spanning laceable if there exists a k *-container between any two vertices from different partite set of G for every k with 1≤kκ(G). In this paper, we prove that the enhanced hypercube Q n,m is super spanning laceable if m is an odd integer and super spanning connected if otherwise.
Chung-Hao ChangEmail:
  相似文献   

14.
15.
Consider the following cascading process on a simple undirected graph G(V,E) with diameter Δ. In round zero, a set S?V of vertices, called the seeds, are active. In round i+1, i∈?, a non-isolated vertex is activated if at least a ρ∈(0,1] fraction of its neighbors are active in round i; it is deactivated otherwise. For k∈?, let min-seed(k)(G,ρ) be the minimum number of seeds needed to activate all vertices in or before round k. This paper derives upper bounds on min-seed(k)(G,ρ). In particular, if G is connected and there exist constants C>0 and γ>2 such that the fraction of degree-k vertices in G is at most C/k γ for all k∈?+, then min-seed(Δ)(G,ρ)=O(?ρ γ?1|V|?). Furthermore, for n∈?+, p=Ω((ln(e/ρ))/(ρn)) and with probability 1?exp(?n Ω(1)) over the Erd?s-Rényi random graphs G(n,p), min-seed(1)(G(n,p),ρ)=O(ρn).  相似文献   

16.
The (k−1)-fault diameter Dk(G) of a k-connected graph G is the maximum diameter of an induced subgraph by deleting at most k−1 vertices from G. This paper considers the fault diameter of the product graph G1G2 of two graphs G1 and G2 and proves that Dk1+k2(G1G2)?Dk1(G1)+Dk2(G2)+1 if G1 is k1-connected and G2 is k2-connected. This generalizes some known results such as Bani? and ?erovnik [I. Bani?, J. ?erovnik, Fault-diameter of Cartesian graph bundles, Inform. Process. Lett. 100 (2) (2006) 47-51].  相似文献   

17.
Suppose that D is an acyclic orientation of the graph G. An arc of D is dependent if its reversal creates a directed cycle. Let d(D) denote the number of dependent arcs in D. Define dmin(G) (dmax(G)) to be the minimum (maximum) number of d(D) over all acyclic orientations D of G. We call G fully orientable if G has an acyclic orientation with exactly k dependent arcs for every k satisfying dmin(G)?k?dmax(G). We prove that every 2-degenerate graph is fully orientable and give interpretations to their dmin.  相似文献   

18.
《国际计算机数学杂志》2012,89(10):2202-2211
Let G be a graph, and let a, b, k be integers with 0≤ab, k≥0. An [a, b]-factor of graph G is defined as a spanning subgraph F of G such that ad F (x)≤b for each xV(G). Then a graph G is called an (a, b, k)-critical graph if after deleting any k vertices of G the remaining graph of G has an [a, b]-factor. In this article, a sufficient condition is given, which is a neighborhood condition for a graph G to be an (a, b, k)-critical graph.  相似文献   

19.
A vertex subversion strategy of a graph G is a set of vertices X? V(G) whose closed neighbourhood is deleted from G. The survival subgraph is denoted by G/X. The vertex-neighbour-integrity of G is defined to be VNI(G)=min{|X|+τ(G/X):X? V(G)}, where τ(G/X) is the maximum order of the components of G/X. This graph parameter was introduced by Cozzens and Wu to measure the vulnerability of spy networks. Gambrell proved that the decision problem of computing the vertex-neighbour-integrity of a graph is 𝒩𝒫-complete. In this paper we evaluate the vertex-neighbour-integrity of the composition graphs of paths and cycles.  相似文献   

20.
A vertex v of a connected graph G distinguishes a pair u, w of vertices of G if d(v, u)≠d(v, w), where d(·,·) denotes the length of a shortest path between two vertices in G. A k-partition Π={S 1, S 2, …, S k } of the vertex set of G is said to be a locatic partition if for every pair of distinct vertices v and w of G, there exists a vertex sS i for all 1≤ik that distinguishes v and w. The cardinality of a largest locatic partition is called the locatic number of G. In this paper, we study the locatic number of paths, cycles and characterize all the connected graphs of order n having locatic number n, n?1 and n?2. Some realizable results are also given in this paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号