首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Let m, j and k be positive integers. An m-circular-L(j, k)-labelling of a graph G is an assignment f from { 0, 1,?…?, m?1} to the vertices of G such that, for any two vertices u and v, |f(u)?f(v)|mj if uvE(G), and |f(u)?f(v)|mk if dG(u, v)=2, where |a|m=min{a, m?a}. The minimum m such that G has an m-circular-L(j, k)-labelling is called the circular-L(j, k)-labelling number of G. This paper determines the circular-L(2, 1)-labelling numbers of the direct product of a path and a complete graph and of the Cartesian product of a path and a cycle.  相似文献   

2.
Let λ(G) be the edge connectivity of G. The direct product of graphs G and H is the graph with vertex set V(G×H)=V(GV(H), where two vertices (u1,v1) and (u2,v2) are adjacent in G×H if u1u2E(G) and v1v2E(H). We prove that λ(G×Kn)=min{n(n−1)λ(G),(n−1)δ(G)} for every nontrivial graph G and n?3. We also prove that for almost every pair of graphs G and H with n vertices and edge probability p, G×H is k-connected, where k=O(2(n/logn)).  相似文献   

3.
《国际计算机数学杂志》2012,89(8):1680-1691
Let G be a graph with vertex set V(G). Let n, k, d be non-negative integers such that n+2k+d≤|V(G)|?2 and |V(G)|?n?d are even. A matching which saturates exactly |V(G)|?d vertices is called a defect-d matching of G. If when deleting any n vertices the remaining subgraph contains a matching of k edges and every k-matching can be extended to a defect-d matching, then G is said to be an (n, k, d)-graph. We present an algorithm to determine (0, 1, d)-graphs with d constraints. Moreover, we solve the problem of augmenting a bipartite graph G=(B, W) to be a (0, 1, d)-graph by adding fewest edges, where d=∥B|?|W∥. The latter problem is applicable to the job assignment problem, where the number of jobs does not equal the number of persons.  相似文献   

4.
《国际计算机数学杂志》2012,89(9):1931-1939
Consider any undirected and simple graph G=(V, E), where V and E denote the vertex set and the edge set of G, respectively. Let |G|=|V|=n. The well-known Ore's theorem states that if degG(u)+degG(v)≥n+k holds for each pair of nonadjacent vertices u and v of G, then G is traceable for k=?1, hamiltonian for k=0, and hamiltonian-connected for k=1. Lin et al. generalized Ore's theorem and showed that under the same condition as above, G is r*-connected for 1≤rk+2 with k≥1. In this paper, we improve both theorems by showing that the hamiltonicity or r*-connectivity of any graph G satisfying the condition degG(u)+degG(v)≥n+k with k≥?1 is preserved even after one vertex or one edge is removed, unless G belongs to two exceptional families.  相似文献   

5.
A local colouring of a graph G is a function c: V(G)→? such that for each S ? V(G), 2≤|S|≤3, there exist u, vS with |c(u)?c(v)| at least the number of edges in the subgraph induced by S. The maximum colour assigned by c is the value χ?(c) of c, and the local chromatic number of G is χ?(G)=min {χ?(c): c is a local colouring of G}. In this note the local chromatic number is determined for Cartesian products G □ H, where G and GH are 3-colourable graphs. This result in part corrects an error from Omoomi and Pourmiri [On the local colourings of graphs, Ars Combin. 86 (2008), pp. 147–159]. It is also proved that if G and H are graphs such that χ(G)≤? χ?(H)/2 ?, then χ?(G □ H)≤χ?(H)+1.  相似文献   

6.
A set S of vertices of a graph G is a dominating set for G if every vertex of G is adjacent to at least one vertex of S. The domination number γ(G), of G, is the minimum cardinality of a dominating set in G. Moreover, if the maximum degree of G is Δ, then for every positive integer k≤Δ, the set S is a k-dominating set in G if every vertex outside of S is adjacent to at least k vertices of S. The k-domination number of G, denoted by γ k (G), is the minimum cardinality of a k-dominating set in G. A map f: V→<texlscub>0, 1, 2</texlscub>is a Roman dominating function for G if for every vertex v with f(v)=0, there exists a vertex uN(v) such that f(u)=2. The weight of a Roman dominating function is f(V)=∑ uV f(u). The Roman domination number γR(G), of G, is the minimum weight of a Roman dominating function on G. In this paper, we obtain that for any two graphs G and H, the k-domination number of the Cartesian product of G and H is bounded below by γ(G k (H)/2. Also, we obtain that the domination number of Cartesian product of G and H is bounded below by γ(GR(H)/3.  相似文献   

7.
Let G be a connected graph of order n, minimum degree δ(G) and edge connectivity λ(G). The graph G is called maximally edge-connected if λ(G)=δ(G), and super edge-connected if every minimum edge-cut consists of edges incident with a vertex of minimum degree. Define the inverse degree of G with no isolated vertices as R(G)=∑ vV(G)1/d(v), where d(v) denotes the degree of the vertex v. We show that if R(G)<2+(n?2δ)/(n?δ) (n?δ?1), then G is super edge-connected. We also give an analogous result for triangle-free graphs.  相似文献   

8.
《国际计算机数学杂志》2012,89(10):2026-2034
Let G be a connected graph with diameter diam(G). The radio number for G, denoted by rn(G), is the smallest integer k such that there exists a function f: V(G)→{0, 1, 2, …, k} with the following satisfied for all vertices u and v:|f(u)?f(v)|≥diam (G)?d G (u, v)+1, where d G (u, v) is the distance between u and v in G. In this paper, we determine the radio number of ladder graphs.  相似文献   

9.
Let G1 and G2 be two graphs. The Kronecker product G1×G2 of G1 and G2 has vertex set V(G1×G2)=V(G1V(G2) and edge set and v1v2E(G2)}. In this paper, we determine some vertex vulnerability parameters of the Kronecker product of complete graphs Km×Kn for n?m?2 and n?3.  相似文献   

10.
Let G be a simple finite connected undirected graph. A contraction φ of G is a mapping from G = G(V, E) toG′ = G′(V′, E′), where G′ is also a simple connected undirected graph, such that if u, ν ∈ V are connected by an edge (adjacent) in G then either φ(u) = φ(ν), or φ(u) and φ(ν) are adjacent in G′. In this paper we are interested in a family of contractions, called bounded contractions, in which ∀ν′ ∈ V′, the degree of ν′ in G′, DegG(ν′), satisfies DegG(ν′) ≤ |φ−1(ν′)|, where φ−1(ν′) denotes the set of vertices in G mapped to ν′ under φ. These types of contractions are useful in the assignment (mapping) of parallel programs to a network of interconnected processors, where the number of communication channels of each processor is small. The main results of this paper are that there exists a partitioning of full m-ary trees that yields a bounded contraction of degree m + 1, i.e., a mapping for which ∀ν′ ∈ V′, |φ−1(ν′)| ≤ m + 1, and that this degree is a lower bound, i.e., there is no mapping of a full m-ary tree such that ∀ν′ ∈ V′, |φ−1(ν′)| ≤ m  相似文献   

11.
Given an undirected multigraph G=(V,E), a family $\mathcal{W}Given an undirected multigraph G=(V,E), a family W\mathcal{W} of areas WV, and a target connectivity k≥1, we consider the problem of augmenting G by the smallest number of new edges so that the resulting graph has at least k edge-disjoint paths between v and W for every pair of a vertex vV and an area W ? WW\in \mathcal{W} . So far this problem was shown to be NP-complete in the case of k=1 and polynomially solvable in the case of k=2. In this paper, we show that the problem for k≥3 can be solved in O(m+n(k 3+n 2)(p+kn+nlog n)log k+pkn 3log (n/k)) time, where n=|V|, m=|{{u,v}|(u,v)∈E}|, and p=|W|p=|\mathcal{W}| .  相似文献   

12.
Let G=(V, E) be a graph with vertex set V of size n and edge set E of size m. A vertex vV is called a hinge vertex if there exist two vertices in V\{v} such that their distance becomes longer when v is removed. In this paper, we present a distributed algorithm that finds all hinge vertices on an arbitrary graph. The proposed algorithm works for named static asynchronous networks and achieves O(n 2) time complexity and O(m) message complexity. In particular, the total messages exchanged during the algorithm are at most 2m(log n+nlog n+1) bits.  相似文献   

13.
《国际计算机数学杂志》2012,89(9):1325-1331
A (g, f)-factor F of a graph G is called a Hamiltonian (g, f)-factor if F contains a Hamiltonian cycle. For a subset X of V(G), let N G (X)= gcup xX N G (x). The binding number of G is defined by bind(G)=min{| N G (X) |/| X|| ?≠X?V(G), N G (X)≠V(G)}. Let G be a connected graph of order n, 3≤ab be integers, and b≥4. Let g, f be positive integer-valued functions defined on V(G), such that ag(x)≤f(x)≤b for every xV(G). Suppose n≥(a+b?4)2/(a?2) and f(V(G)) is even, we shall prove that if bind(G)>((a+b?4)(n?1))/((a?2)n?(5/2)(a+b?4)) and for any independent set X?V(G), N G (X)≥((b?3)n+(2a+2b?9)| X|)/(a+b?5), then G has a Hamiltonian (g, f)-factor.  相似文献   

14.
We study the partial vertex cover problem. Given a graph G=(V,E), a weight function w:VR +, and an integer s, our goal is to cover all but s edges, by picking a set of vertices with minimum weight. The problem is clearly NP-hard as it generalizes the well-known vertex cover problem. We provide a primal-dual 2-approximation algorithm which runs in O(nlog n+m) time. This represents an improvement in running time from the previously known fastest algorithm. Our technique can also be used to get a 2-approximation for a more general version of the problem. In the partial capacitated vertex cover problem each vertex u comes with a capacity k u . A solution consists of a function x:V→ℕ0 and an orientation of all but s edges, such that the number of edges oriented toward vertex u is at most x u k u . Our objective is to find a cover that minimizes ∑ vV x v w v . This is the first 2-approximation for the problem and also runs in O(nlog n+m) time. Research supported by NSF Awards CCR 0113192 and CCF 0430650, and the University of Maryland Dean’s Dissertation Fellowship.  相似文献   

15.
In a graph G, a k-container Ck(u,v) is a set of k disjoint paths joining u and v. A k-container Ck(u,v) is k∗-container if every vertex of G is passed by some path in Ck(u,v). A graph G is k∗-connected if there exists a k∗-container between any two vertices. An m-regular graph G is super-connected if G is k∗-connected for any k with 1?k?m. In this paper, we prove that the recursive circulant graphs G(2m,4), proposed by Park and Chwa [Theoret. Comput. Sci. 244 (2000) 35-62], are super-connected if and only if m≠2.  相似文献   

16.
A graph G is panconnected if each pair of distinct vertices u,vV(G) are joined by a path of length l for all dG(u,v)?l?|V(G)|-1, where dG(u,v) is the length of a shortest path joining u and v in G. Recently, Fan et. al. [J. Fan, X. Lin, X. Jia, Optimal path embedding in crossed cubes, IEEE Trans. Parall. Distrib. Syst. 16 (2) (2005) 1190-1200, J. Fan, X. Jia, X. Lin, Complete path embeddings in crossed cubes, Inform. Sci. 176 (22) (2006) 3332-3346] and Xu et. al. [J.M. Xu, M.J. Ma, M. Lu, Paths in Möbius cubes and crossed cubes, Inform. Proc. Lett. 97 (3) (2006) 94-97] both proved that n-dimensional crossed cube, CQn, is almost panconnected except the path of length dCQn(u,v)+1 for any two distinct vertices u,vV(CQn). In this paper, we give a necessary and sufficient condition to check for the existence of paths of length dCQn(u,v)+1, called the nearly shortest paths, for any two distinct vertices u,v in CQn. Moreover, we observe that only some pair of vertices have no nearly shortest path and we give a construction scheme for the nearly shortest path if it exists.  相似文献   

17.
An adjacent vertex-distinguishing edge coloring of a simple graph G is a proper edge coloring of G such that incident edge sets of any two adjacent vertices are assigned different sets of colors. A total coloring of a graph G is a coloring of both the edges and the vertices. A total coloring is proper if no two adjacent or incident elements receive the same color. An adjacent vertex-distinguishing total coloring h of a simple graph G=(V,E) is a proper total coloring of G such that H(u)≠H(v) for any two adjacent vertices u and v, where H(u)={h(wu)|wuE(G)}∪{h(u)} and H(v)={h(xv)|xvE(G)}∪{h(v)}. The minimum number of colors required for an adjacent vertex-distinguishing edge coloring (resp. an adjacent vertex-distinguishing total coloring) of G is called the adjacent vertex-distinguishing edge chromatic number (resp. adjacent vertex-distinguishing total chromatic number) of G and denoted by (resp. χat(G)). In this paper, we consider the adjacent vertex-distinguishing edge chromatic number and adjacent vertex-distinguishing total chromatic number of the hypercube Qn, prove that for n?3 and χat(Qn)=Δ(Qn)+2 for n?2.  相似文献   

18.
For two distinct vertices u,vV(G), a cycle is called geodesic cycle with u and v if a shortest path of G joining u and v lies on the cycle; and a cycle C is called balanced cycle with u and v if dC(u,v)=max{dC(x,y)|x,yV(C)}. A graph G is pancyclic [J. Mitchem, E. Schmeichel, Pancyclic and bipancyclic graphs a survey, Graphs and applications (1982) 271-278] if it contains a cycle of every length from 3 to |V(G)| inclusive. A graph G is called geodesic pancyclic [H.C. Chan, J.M. Chang, Y.L. Wang, S.J. Horng, Geodesic-pancyclic graphs, in: Proceedings of the 23rd Workshop on Combinatorial Mathematics and Computation Theory, 2006, pp. 181-187] (respectively, balanced pancyclic) if for each pair of vertices u,vV(G), it contains a geodesic cycle (respectively, balanced cycle) of every integer length of l satisfying max{2dG(u,v),3}?l?|V(G)|. Lai et al. [P.L. Lai, J.W. Hsue, J.J.M. Tan, L.H. Hsu, On the panconnected properties of the Augmented cubes, in: Proceedings of the 2004 International Computer Symposium, 2004, pp. 1249-1251] proved that the n-dimensional Augmented cube, AQn, is pancyclic in the sense that a cycle of length l exists, 3?l?|V(AQn)|. In this paper, we study two new pancyclic properties and show that AQn is geodesic pancyclic and balanced pancyclic for n?2.  相似文献   

19.
A k-dominating set for a graph G(V, E) is a set of vertices D? V such that every vertex vV\ D is adjacent to at least k vertices in D. The k-domination number of G, denoted by γ k (G), is the cardinality of a smallest k-dominating set of G. Here we establish lower and upper bounds of γ k (C m ×C n ) for k=2. In some cases, these bounds agree so that the exact 2-domination number is obtained.  相似文献   

20.
《国际计算机数学杂志》2012,89(17):3570-3576
A graph G of size q is odd graceful, if there is an injection φ from V(G) to {0, 1, 2, …, 2q?1} such that, when each edge xy is assigned the label or weight |f(x)?f(y)|, the resulting edge labels are {1, 3, 5, …, 2q?1}. This definition was introduced in 1991 by Gnanajothi [3], who proved that the graphs obtained by joining a single pendant edge to each vertex of C n are odd graceful, if n is even. In this paper, we generalize Gnanajothi's result on cycles by showing that the graphs obtained by joining m pendant edges to each vertex of C n are odd graceful if n is even. We also prove that the subdivision of ladders S(L n ) (the graphs obtained by subdividing every edge of L n exactly once) is odd graceful.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号