首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents a novel compiler algorithm,called acyclic orientation graph coloring(AOG coloring),for managing data objects in software-managed memory allocation.The key insight is that softwaremanaged memory allocation could be solved as an interval coloring problem,or equivalently,an acyclic orientation problem.We generalize graph coloring register allocation to interval coloring memory allocation by maintaining an acyclic orientation to the currently colored subgraph.This is achieved with some well-crafted heuristics,including Aggressive Simplify that does not necessarily preserve colorability and Best-Fit Select that assigns intervals(i.e.,colors)to nodes by possibly adjusting the colors already assigned to other nodes earlier.Our algorithm generalizes and subsumes as a special case the classical graph coloring register allocation algorithm without notably increased complexity:it deals with memory allocation while preserving the elegance and practicality of traditional graph coloring register allocation.We have implemented our algorithm and tested it on Appel’s 27921 interference graphs for scalars(augmented with node weights).Our algorithm outperforms Memory Coloring,the best in the literature,for software-managed memory allocation,on 98.64%graphs,in which,the gaps are more than 20%on 68.31%graphs and worse only on 0.29%graphs.We also tested it on all the 73 DIMACS weighted benchmarks(weighted graphs),AOG Coloring outperforms Memory Coloring on all of the benchmarks,in which,the gaps are more than 20%on 83.56%graphs.  相似文献   

2.
We study the distributed maximal independent set (henceforth, MIS) problem on sparse graphs. Currently, there are known algorithms with a sublogarithmic running time for this problem on oriented trees and graphs of bounded degrees. We devise the first sublogarithmic algorithm for computing an MIS on graphs of bounded arboricity. This is a large family of graphs that includes graphs of bounded degree, planar graphs, graphs of bounded genus, graphs of bounded treewidth, graphs that exclude a fixed minor, and many other graphs. We also devise efficient algorithms for coloring graphs from these families. These results are achieved by the following technique that may be of independent interest. Our algorithm starts with computing a certain graph-theoretic structure, called Nash-Williams forests-decomposition. Then this structure is used to compute the MIS or coloring. Our results demonstrate that this methodology is very powerful. Finally, we show nearly-tight lower bounds on the running time of any distributed algorithm for computing a forests-decomposition.  相似文献   

3.
针对一般图设计了一种新型的点可区别边染色算法。该算法把概率思想和图染色相结合, 根据点可区别边染色的约束规则确立目标函数, 利用交换规则逐步寻优, 当目标函数的值满足要求时染色成功。给出详细算法步骤并进行了测试和分析, 实验结果表明该算法可以求出满足猜想的点可区别边色数。  相似文献   

4.
图[G]的点可区别V-全染色就是相邻的边、顶点与其关联边必须染不同的颜色,同时要求所有顶点的色集合也不相同,所用的最少颜色数称为图[G]的点可区别V-全色数。根据点可区别V-全染色的约束规则,设计了一种启发式的点可区别V-全染色算法,该算法借助染色矩阵及色补集合逐步迭代交换,每次迭代交换后判断目标函数值,当目标函数值满足要求时染色成功。给出了算法的详细描述、算法分析和算法测试结果,对给定点数的图进行了点可区别V-全染色猜想的验证。实验结果表明,该算法有很好的执行效率并可以得到给定图的点可区别V-全色数,并且算法的时间复杂度不超过[O(n3)]。  相似文献   

5.
In this paper the coloring problem for unit disk (UD) graphs is considered. UD graphs are the intersection graphs of equal-sized disks in the plane. Colorings of UD graphs arise in the study of channel assignment problems in broadcast networks. Improving on a result of Clark et al. [2] it is shown that the coloring problem for UD graphs remains NP-complete for any fixed number of colors k≥ 3 . Furthermore, a new 3-approximation algorithm for the problem is presented which is based on network flow and matching techniques. Received February 12, 1996; revised October 9, 1996.  相似文献   

6.
Coloring large graphs based on independent set extraction   总被引:1,自引:0,他引:1  
This paper presents an effective approach (EXTRACOL) to coloring large graphs. The proposed approach uses a preprocessing method to extract large independent sets from the graph and a memetic algorithm to color the residual graph. Each preprocessing application identifies, with a dedicated tabu search algorithm, a number of pairwise disjoint independent sets of a given size in order to maximize the vertices removed from the graph. We evaluate EXTRACOL on the 11 largest graphs (with 1000 to 4000 vertices) of the DIMACS challenge benchmarks and show improved results for four very difficult graphs (DSJC1000.9, C2000.5, C2000.9, C4000.5). The behavior of the proposed algorithm is also analyzed.  相似文献   

7.
图的邻点可区别均匀V-全染色(AVDEVTC)是指在满足邻点可区别V-全染色的基础上,还要保证每种颜色的使用次数相差不超过1,把完成AVDEVTC所用的最少颜色称为图的邻点可区别均匀V-全色数(AVDEVTCN)。针对图的AVDEVTC问题,提出了一种基于多目标优化的染色算法。设计了一个总目标函数和四个子目标函数,在染色矩阵上通过每个点的颜色集合的迭代交换操作,使得每个子目标函数都达到最优,进而满足总目标函数的要求,完成染色。经过理论分析和实验对比表明,8个顶点以内的所有简单连通图都存在AVDEVTC,且图的AVDEVTCN介于最大度加1与最大度加2之间。实验结果表明,该染色算法能够在较短的时间内正确地计算出1000个顶点以内的图的AVDEVTCN。  相似文献   

8.
We present the first location-oblivious distributed unit disk graph coloring algorithm having a provable performance ratio of three (i.e. the number of colors used by the algorithm is at most three times the chromatic number of the graph). This is an improvement over the standard sequential coloring algorithm that has a worst case lower bound on its performance ratio of 4−3/k (for any k>2, where k is the chromatic number of the unit disk graph achieving the lower bound) (Tsai et al., in Inf. Process. Lett. 84(4):195–199, 2002). We present a slightly better worst case lower bound on the performance ratio of the sequential coloring algorithm for unit disk graphs with chromatic number 4. Using simulation, we compare our algorithm with other existing unit disk graph coloring algorithms.  相似文献   

9.
We present an improved online algorithm for coloring interval graphs with bandwidth. This problem has recently been studied by Adamy and Erlebach and a 195-competitive online strategy has been presented. We improve this by presenting a 10-competitive strategy. To achieve this result, we use variants of an optimal online coloring algorithm due to Kierstead and Trotter.  相似文献   

10.
In this paper, we consider two problems: the edge coloring and the strong edge coloring problems on unit disk graphs (UDGs). Both problems have important applications in wireless sensor networks as they can be used to model link scheduling problems in such networks. It is well known that both problems are NP-complete, and approximation algorithms for them have been extensively studied under the centralized model of computation. Centralized algorithms, however, are not suitable for ad hoc wireless sensor networks whose devices typically have limited resources, and lack the centralized coordination.We develop local distributed approximation algorithms for the edge coloring and the strong edge coloring problems on unit disk graphs. For the edge coloring problem, our local distributed algorithm has approximation ratio 2 and locality 50. For the strong edge coloring problem on UDGs, we present two local distributed algorithms with different tradeoffs between their approximation ratio and locality. The first algorithm has ratio 128 and locality 22, whereas the second algorithm has ratio 10 and locality 180.  相似文献   

11.
We present a scalable framework for parallelizing greedy graph coloring algorithms on distributed-memory computers. The framework unifies several existing algorithms and blends a variety of techniques for creating or facilitating concurrency. The latter techniques include exploiting features of the initial data distribution, the use of speculative coloring and randomization, and a BSP-style organization of computation and communication. We experimentally study the performance of several specialized algorithms designed using the framework and implemented using MPI. The experiments are conducted on two different platforms and the test cases include large-size synthetic graphs as well as real graphs drawn from various application areas. Computational results show that implementations that yield good speedup while at the same time using about the same number of colors as a sequential greedy algorithm can be achieved by setting parameters of the framework in accordance with the size and structure of the graph being colored. Our implementation is freely available as part of the Zoltan parallel data management and load-balancing library.  相似文献   

12.
This paper studies the natural linear programming relaxation of the path coloring problem. We prove constructively that finding an optimal fractional path coloring is Fixed Parameter Tractable (FPT), with the degree of the tree as parameter: the fractional coloring of paths in a bounded degree trees can be done in a time which is linear in the size of the tree, quadratic in the load of the set of paths, while exponential in the degree of the tree. We give an algorithm based on the generation of an efficient polynomial size linear program. Our algorithm is able to explore in polynomial time the exponential number of different fractional colorings, thanks to the notion of trace of a coloring that we introduce. We further give an upper bound on the cost of such a coloring in binary trees and extend this algorithm to bounded degree graphs with bounded treewidth. Finally, we also show some relationships between the integral and fractional problems, and derive a 1+5/3e≈1.61—approximation algorithm for the path coloring problem in bounded degree trees, improving on existing results. This classic combinatorial problem finds applications in the minimization of the number of wavelengths in wavelength division multiplexing (wdm) optical networks.  相似文献   

13.
The problem of on-line coloring of an arbitrary graphs is known to be hard. Here we consider the problem of on-line coloring in the simplified situation where the input graph is KKs,t-free. We show that the on-line coloring algorithm with the First Fit strategy of proposed by Capponi and Pilotto in [1] is the best one for KK1,t-free graphs (t≥3). A.Capponi and C.Pilotto have shown that this algorithm achieves a competitive ratio of t−1 while we show that it is the best possible. However for the family of KKs,t-free graphs (s≥2, t≥2) there exists no on-line coloring algorithm with a competitive function. The problem of an on-line cliques covering for these families is hard. There exists no on-line cliques covering algorithm with a competitive function for the family of KKs,t-free graphs (s≥ 1, t≥3). The additional assumption that the input graph is given in a connected way does not help a lot and does not change our results described above.  相似文献   

14.
目前对图的均匀全染色的研究仅限于一些如完全图、正则图等特殊图,还没有发现用于研究一般简单连通图的正常均匀全染色的算法。为了研究一般图的正常均匀全染色,根据正常均匀全染色的点约束、边约束、点边约束和均匀约束四个约束规则,设计了一种新的启发式智能算法。首先,该算法确定四个子目标函数和一个总目标函数;然后,在每个子目标函数内借助染色矩阵及色补集合矩阵逐步迭代交换,直到子目标函数值为0时,子目标染色完成;最后,当每个子目标函数值都为0时,总目标函数值为0,染色成功。实验结果表明,该算法可以生成8个点以内的所有简单连通图,并能对每个生成图进行正常均匀全染色,得到其均匀全色数,且验证得对任意的正整数k,当3≤ k≤ 9时,随机图G都有k-均匀全染色。同时在20到400个点之间选取了72个图,用所提算法对其进行均匀全染色,并依据染色结果绘制了它们的点数-边密度-所需色数关系图。  相似文献   

15.
We consider the sum coloring and sum multicoloring problems on several fundamental classes of graphs, including the classes of interval and k-claw free graphs. We give an algorithm that approximates sum coloring within a factor of 1.796, for any graph in which the maximum k-colorable subgraph problem is polynomially solvable. In particular, this improves on the previous best known ratio of 2 for interval graphs. We introduce a new measure of coloring, robust throughput}, that indicates how quickly the graph is colored, and show that our algorithm approximates this measure within a factor of 1.4575. In addition, we study the contiguous (or non-preemptive) sum multicoloring problem on k-claw free graphs. This models, for example, the scheduling of dependent jobs on multiple dedicated machines, where each job requires the exclusive use of at most k machines. Assuming that k is a fixed constant, we obtain the first constant factor approximation for the problem.  相似文献   

16.
并行图论算法研究进展   总被引:10,自引:1,他引:9  
在这篇综述文章中,我们将重点介绍并行图论处近年来的发展概况及主要成果,并给出一些可能的发展方向。具体内容包括:基于共享存储模型上的图搜索技术、连发支及最小生成树算法、增值并行图论算法、最短路径算法、极大独立集算法、极大匹配与最大匹配算法,图着色算法、求欧拉回路及哈密尔顿回路算法,图同构算法、图K连通算法以及最大流最小割算法等。  相似文献   

17.
Most of the recent heuristics for the graph coloring problem start from an infeasible k-coloring (adjacent vertices may have the same color) and try to make the solution feasible through a sequence of color exchanges. In contrast, our approach (called FOO-PARTIALCOL), which is based on tabu search, considers feasible but partial solutions and tries to increase the size of the current partial solution. A solution consists of k disjoint stable sets (and, therefore, is a feasible, partial k-coloring) and a set of uncolored vertices. We introduce a reactive tabu tenure which substantially enhances the performance of both our heuristic as well as the classical tabu algorithm (called TABUCOL) proposed by Hertz and de Werra [Using tabu search techniques for graph coloring, Computing 1987;39:345–51]. We will report numerical results on different benchmark graphs and we will observe that FOO-PARTIALCOL, though very simple, outperforms TABUCOL on some instances, provides very competitive results on a set of benchmark graphs which are known to be difficult, and outperforms the best-known methods on the graph flat300_28_0. For this graph, FOO-PARTIALCOL finds an optimal coloring with 28 colors. The best coloring achieved to date uses 31 colors. Algorithms very close to TABUCOL are still used as intensification procedures in the best coloring methods, which are evolutionary heuristics. FOO-PARTIALCOL could then be a powerful alternative. In conclusion FOO-PARTIALCOL is one of the most efficient simple local search coloring methods yet available.  相似文献   

18.
Edge coloring, total coloring and L(2,1)-labeling are well-studied NP-hard graph problems. Even the versions asking whether a graph has a coloring with few colors or a labeling with few labels remain NP-hard on graphs of small maximum degree. This paper studies enumeration and counting problems on edge colorings, total colorings and L(2,1)-labelings of graphs. One part deals with the enumeration of all edge 3-colorings, all total 4-colorings and all L(2,1)-labelings of span 5 of a given connected cubic graph. Branching algorithms to solve these enumeration problems are established. They imply upper bounds on the maximum number of edge 3-colorings, total 4-colorings and L(2,1)-labelings of span 5 in any n-vertex connected cubic graphs. Corresponding combinatorial lower bounds are also provided. The other part of the paper studies dynamic programming algorithms solving counting problems. On one hand, algorithms to count the number of edge k-colorings and total k-colorings for graphs of bounded pathwidth are given. On the other hand, an algorithm to count the number of L(2,1)-labelings of span 4 for graphs of maximum degree three are given.  相似文献   

19.
Graph coloring has a wide range of real world applications, such as in the operations research, communication network, computational biology and compiler optimization fields. In our recent work [1], we propose a divide-andconquer approach for graph coloring, called VColor. Such an approach has three generic subroutines. (i) Graph partition subroutine: VColor partitions a graph G into a vertex cut partition (VP), which comprises a vertex cut component (VCC) and small non-overlapping connected components (CCs). (ii) Component coloring subroutine: VColor colors the VCC and the CCs by efficient algorithms. (iii) Color combination subroutine: VColor combines the local colors by exploiting the maximum matchings of color combination bigraphs (CCBs). VColor has revealed some major bottlenecks of efficiency in these subroutines. Therefore, in this paper, we propose VColor*, an approach which addresses these efficiency bottlenecks without using more colors both theoretically and experimentally. The technical novelties of this paper are the following. (i) We propose the augmented VP to index the crossing edges of the VCC and the CCs and propose an optimized CCB construction algorithm. (ii) For sparse CCs, we propose using a greedy coloring algorithm that is of polynomial time complexity in the worst case, while preserving the approximation ratio. (iii) We propose a distributed graph coloring algorithm. Our extensive experimental evaluation on real-world graphs confirms the efficiency of VColor*. In particular, VColor* is 20X and 50X faster than VColor and uses the same number of colors with VColor on the Pokec and PA datasets, respectively. VColor* also significantly outperforms the state-ofthe- art graph coloring methods.  相似文献   

20.
The ‘LeRP’ algorithm approximates subgraph isomorphism for attributed graphs based on counts of length-r paths. The algorithm provides a good approximation to the maximal isomorphic subgraph. The basic approach of the LeRP algorithm differs fundamentally from other methods. When comparing structural similarity LeRP uses a neighborhood of nodes that varies in size dynamically. This approach provides sufficient evidence of similarity to permit LeRP to form a node-to-node mapping and can be computed with polynomial effort in the worst-case. Results from over 32,000 simulated cases are reported. We demonstrate that LeRP does not need a high dynamic range of node and edge coloring to perform well. For example, LeRP can input 50-node and 100-node graphs that contain a common 50-node subgraph, and then compute a matching subgraph having 49.74±0.46 nodes (mean ± one standard deviation). This takes from 0.4 to 0.5 s. In this example, 100 trials were evaluated and graphs had discrete coloring for nodes and edges with a dynamic range of four. Test conditions are varied and include strongly regular graphs as well as Model A.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号