首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
In this paper, we analyse the iterated collocation method for the nonlinear Urysohn operator equation x=y+K(x) with K a singular kernel. The paper extends the study [H. Kaneko, R.D. Noren, and P.A. Padilla, J. Comput. Appl. Math. 80 (1997), pp. 335–349] in which the convergence of the iterated collocation method for Urysohn equations is considered.  相似文献   

2.
《国际计算机数学杂志》2012,89(8):1366-1374
In this study we are concerned with the local convergence of a Newton-type method introduced by us [I.K. Argyros and D. Chen, On the midpoint iterative method for solving nonlinear equations in Banach spaces, Appl. Math. Lett. 5 (1992), pp. 7–9.] for approximating a solution of a nonlinear equation in a Banach space setting. This method has also been studied by Homeier [H.H.H. Homeier, A modified Newton method for rootfinding with cubic convergence, J. Comput. Appl. Math. 157 (2003), pp. 227–230.] and Özban [A.Y. Özban, Some new variants of Newton's method, Appl. Math. Lett. 17 (2004), pp. 677–682.] in real or complex space. The benefits of using this method over other methods using the same information have been explained in [I.K. Argyros, Computational theory of iterative methods, in Studies in Computational Mathematics, Vol. 15, C.K. Chui and L. Wuytack, eds., Elsevier Science Inc., New York, USA, 2007.; I.K. Argyros and D. Chen, On the midpoint iterative method for solving nonlinear equations in Banach spaces, Appl. Math. Lett. 5 (1992), pp. 7–9.; H.H.H. Homeier, A modified Newton method for rootfinding with cubic convergence, J. Comput. Appl. Math. 157 (2003), pp. 227–230.; A.Y. Özban, Some new variants of Newton's method, Appl. Math. Lett. 17 (2004), pp. 677–682.]. Here, we give the convergence radii for this method under a type of weak Lipschitz conditions proven to be fruitful by Wang in the case of Newton's method [X. Wang, Convergence of Newton's method and inverse function in Banach space, Math. Comput. 68 (1999), pp. 169–186 and X. Wang, Convergence of Newton's method and uniqueness of the solution of equations in Banach space, IMA J. Numer. Anal. 20 (2000), pp. 123–134.]. Numerical examples are also provided.  相似文献   

3.
This paper describes a cubically convergent iteration method for finding the multiple roots of nonlinear equations, f(x)=0, where f:?→? is a continuous function. This work is the extension of our earlier work [P.K. Parida, and D.K. Gupta, An improved regula-falsi method for enclosing simple zeros of nonlinear equations, Appl. Math. Comput. 177 (2006), pp. 769–776] where we have developed a cubically convergent improved regula-falsi method for finding simple roots of f(x)=0. First, by using some suitable transformation, the given function f(x) with multiple roots is transformed to F(x) with simple roots. Then, starting with an initial point x 0 near the simple root x* of F(x)=0, the sequence of iterates {x n }, n=0, 1, … and the sequence of intervals {[a n , b n ]}, with x*∈{[a n , b n ]} for all n are generated such that the sequences {(x n ?x*)} and {(b n ?a n )} converges cubically to 0 simultaneously. The convergence theorems are established for the described method. The method is tested on a number of numerical examples and the results obtained are compared with those obtained by King [R.F. King, A secant method for multiple roots, BIT 17 (1977), pp. 321–328.].  相似文献   

4.
The purpose of this study is to give a Taylor polynomial approximation for the solution of hyperbolic type partial differential equations with constant coefficients. The technique used is an improved Taylor matrix method, which has been given for solving ordinary differential, integral and integro-differential equations [M. Gülsu and M. Sezer, A method for the approximate solution of the high-order linear difference equations in terms of Taylor polynomials, Int. J. Comput. Math. 82(5) (2005), pp. 629–642; M. Gülsu and M. Sezer, On the solution of the Riccati equation by the Taylor matrix method, Appl. Math. Comput. 188 (2007), pp. 446–449; A. Karamete and M. Sezer, A Taylor collocation method for the solution of linear integro-differential equations, Int. J. Comput. Math. 79(9) (2002), pp. 987–1000; N. Kurt and M. Çevik, Polynomial solution of the single degree of freedom system by Taylor matrix method, Mech. Res. Commun. 35 (2008), pp. 530–536; N. Kurt and M. Sezer, Polynomial solution of high-order linear Fredholm integro-differential equations with constant coefficients, J. Franklin Inst. 345 (2008), pp. 839–850; ?. Nas, S. Yalçinba?, and M. Sezer, A method for approximate solution of the high-order linear Fredholm integro-differential equations, Int. J. Math. Edu. Sci. Technol. 27(6) (1996), pp. 821–834; M. Sezer, Taylor polynomial solution of Volterra integral equations, Int. J. Math. Edu. Sci. Technol. 25(5) (1994), pp. 625–633; M. Sezer, A method for approximate solution of the second order linear differential equations in terms of Taylor polynomials, Int. J. Math. Edu. Sci. Technol. 27(6) (1996), pp. 821–834; M. Sezer, M. Gülsu, and B. Tanay, A matrix method for solving high-order linear difference equations with mixed argument using hybrid Legendre and Taylor polynomials, J. Franklin Inst. 343 (2006), pp. 647–659; S. Yalçinba?, Taylor polynomial solutions of nonlinear Volterra–Fredholm integral equation, Appl. Math. Comput. 127 (2002), pp. 196–206; S. Yalçinba? and M. Sezer, The approximate solution of high-order linear Volterra–Fredholm integro-differential equations in terms of Taylor polynomials, Appl. Math. Comput. 112 (2000), pp. 291–308]. Some numerical examples, which consist of initial and boundary conditions, are given to illustrate the reliability and efficiency of the method. Also, the results obtained are compared by the known results; the error analysis is performed and the accuracy of the solution is shown.  相似文献   

5.
《国际计算机数学杂志》2012,89(16):3468-3482
In this paper, a spline collocation method is applied to solve a system of fourth-order boundary-value problems associated with obstacle, unilateral and contact problems. The presented method is dependent on four collocation points to be satisfied by four parameters θ j ∈(0, 1], j=1(1) 4 in each subinterval. It turns out that the proposed method when applied to the concerned system is a fourth-order convergent method and gives numerical results which are better than those produced by other spline methods [E.A. Al-Said and M.A. Noor, Finite difference method for solving fourth-order obstacle problems, Int. J. Comput. Math. 81(6) (2004), pp. 741–748; F. Geng and Y. Lin, Numerical solution of a system of fourth order boundary value problems using variational iteration method, Appl. Math. Comput. 200 (2008), pp. 231–241; J. Rashidinia, R. Mohammadi, R. Jalilian, and M. Ghasemi, Convergence of cubic-spline approach to the solution of a system of boundary-value problems, Appl. Math. Comput. 192 (2007), pp. 319–331; S.S. Siddiqi and G. Akram, Solution of the system of fourth order boundary value problems using non polynomial spline technique, Appl. Math. Comput. 185 (2007), pp. 128–135; S.S. Siddiqi and G. Akram, Numerical solution of a system of fourth order boundary value problems using cubic non-polynomial spline method, Appl. Math. Comput. 190(1) (2007), pp. 652–661; S.S. Siddiqi and G. Akram, Solution of the system of fourth order boundary value problems using cubic spline, Appl. Math. Comput. 187(2) (2007), pp. 1219–1227; Siraj-ul-Islam, I.A. Tirmizi, F. Haq, and S.K. Taseer, Family of numerical methods based on non-polynomial splines for solution of contact problems, Commun. Nonlinear Sci. Numer. Simul. 13 (2008), pp. 1448–1460]. Moreover, the absolute stability properties appear that the method is A-stable. Two numerical examples (one for each case of boundary conditions) are given to illustrate practical usefulness of the method developed.  相似文献   

6.
We introduce a Steffensen-type method (STTM) for solving nonlinear equations in a Banach space setting. Then, we present a local convergence analysis for (STTM) using recurrence relations. Numerical examples validating our theoretical results are also provided in this study to show that (STTM) is faster than other methods [I.K. Argyros, J. Ezquerro, J.M. Gutiérrez, M. Hernández, and S. Hilout, On the semilocal convergence of efficient Chebyshev-Secant-type methods, J. Comput. Appl. Math. 235 (2011), pp. 3195–3206; J.A. Ezquerro and M.A. Hernández, An optimization of Chebyshev's method, J. Complexity 25 (2009), pp. 343–361] using similar convergence conditions.  相似文献   

7.
《国际计算机数学杂志》2012,89(12):2575-2590
In this paper, two efficient fourth-order compact finite difference algorithms have been developed to solve the one-dimensional Burgers’ equation: u t +u u x u xx . The methods are based on the Hopf–Cole transformation, Richardson's extrapolation, and multilevel grids. In both methods, we first transform the original nonlinear Burgers’ equation into a linear heat equation: w t w xx using the Hopf–Cole transformation, which is given as u=?2ε (w x /w). In the first method, the resulted heat equation is solved by the second-order accurate Crank–Nicholson algorithm while w x is approximated by central finite difference, which is also second-order accurate. Richardson's extrapolation technique is then applied in both time and space to obtain fourth-order accuracy. In the second method, to reduce the cancellation error in approximating w x , we derive the heat equation satisfied by w x , which is then solved by the Crank–Nicholson algorithm. The original Dirichlet boundary condition is transformed into the Robin boundary condition, which is also approximated using second-order central finite difference. Finally, Richardson's extrapolation and multilevel grid techniques are applied in both time and space to obtain fourth-order accuracy. To study the efficiency, accuracy and robustness, we solved two numerical examples and the results are compared with those of two other higher-order methods proposed in W. Liao [An implicit fourth-order compact finite difference scheme for one-dimensional Burgers’ equation, Appl. Math. Comput. 206(2) (2008), pp. 755–764] and I.A. Hassanien, A.A. Salama, and H.A. Hosham [Fourth-order finite difference method for solving Burgers’ equation, Appl. Math. Comput. 170 (2005), pp. 781–800].  相似文献   

8.
《国际计算机数学杂志》2012,89(9):1657-1666
In [M.M. Hosseini, Modified Adomain decomposition method for specific second order ordinary differential equations, Appl. Math. Comput. 186 (2007), pp. 117–123] an efficient modification of Adomian decomposition method has been proposed for solving some cases of ordinary differential equations. In this paper, this method is generalized to more cases. The proposed method can be applied to linear, nonlinear, singular and nonsingular problems. Here, it is focused on nonlinear singular initial value problems of ordinary differential equations. The scheme is tested for some examples and the obtained results demonstrate reliability and efficiency of the proposed method.  相似文献   

9.
《国际计算机数学杂志》2012,89(14):3273-3296
We introduce the new idea of recurrent functions to provide a new semilocal convergence analysis for Newton-type methods. It turns out that our sufficient convergence conditions are weaker, and the error bounds are tighter than in earlier studies in many interesting cases [X. Chen, On the convergence of Broyden-like methods for nonlinear equations with nondifferentiable terms, Ann. Inst. Statist. Math. 42 (1990), pp. 387–401; X. Chen and T. Yamamoto, Convergence domains of certain iterative methods for solving nonlinear equations, Numer. Funct. Anal. Optim. 10 (1989), pp. 37–48; Y. Chen and D. Cai, Inexact overlapped block Broyden methods for solving nonlinear equations, Appl. Math. Comput. 136 (2003), pp. 215–228; J.E. Dennis, Toward a unified convergence theory for Newton-like methods, in Nonlinear Functional Analysis and Applications, L.B. Rall, ed., Academic Press, New York, 1971, pp. 425–472; P. Deuflhard, Newton Methods for Nonlinear Problems. Affine Invariance and Adaptive Algorithms, Springer Series in Computational Mathematics, Vol. 35, Springer-Verlag, Berlin, 2004; P. Deuflhard and G. Heindl, Affine invariant convergence theorems for Newton's method and extensions to related methods, SIAM J. Numer. Anal. 16 (1979), pp. 1–10; Z. Huang, A note of Kantorovich theorem for Newton iteration, J. Comput. Appl. Math. 47 (1993), pp. 211–217; L.V. Kantorovich and G.P. Akilov, Functional Analysis, Pergamon Press, Oxford, 1982; D. Li and M. Fukushima, Globally Convergent Broyden-like Methods for Semismooth Equations and Applications to VIP, NCP and MCP, Optimization and Numerical Algebra (Nanjing, 1999), Ann. Oper. Res. 103 (2001), pp. 71–97; C. Ma, A smoothing Broyden-like method for the mixed complementarity problems, Math. Comput. Modelling 41 (2005), pp. 523–538; G.J. Miel, Unified error analysis for Newton-type methods, Numer. Math. 33 (1979), pp. 391–396; G.J. Miel, Majorizing sequences and error bounds for iterative methods, Math. Comp. 34 (1980), pp. 185–202; I. Moret, A note on Newton type iterative methods, Computing 33 (1984), pp. 65–73; F.A. Potra, Sharp error bounds for a class of Newton-like methods, Libertas Math. 5 (1985), pp. 71–84; W.C. Rheinboldt, A unified convergence theory for a class of iterative processes, SIAM J. Numer. Anal. 5 (1968), pp. 42–63; T. Yamamoto, A convergence theorem for Newton-like methods in Banach spaces, Numer. Math. 51 (1987), pp. 545–557; P.P. Zabrejko and D.F. Nguen, The majorant method in the theory of Newton–Kantorovich approximations and the Pták error estimates, Numer. Funct. Anal. Optim. 9 (1987), pp. 671–684; A.I. Zin[cbreve]enko, Some approximate methods of solving equations with non-differentiable operators, (Ukrainian), Dopovidi Akad. Nauk Ukraïn. RSR (1963), pp. 156–161]. Applications and numerical examples, involving a nonlinear integral equation of Chandrasekhar-type, and a differential equation are also provided in this study.  相似文献   

10.
Cui et al. [M. Cui and F. Geng, Solving singular two point boundary value problems in reproducing kernel space, J. Comput. Appl. Math. 205 (2007), pp. 6–15; H. Yao and M. Cui, A new algorithm for a class of singular boundary value problems, Appl. Math. Comput. 186 (2007), pp. 1183–1191] presents an algorithm to solve a class of singular linear boundary value problems in the reproducing kernel space. In this paper, we will present three new algorithms to solve a class of singular weakly nonlinear boundary value problems in reproducing kernel space. The algorithms are efficiently applied to solving some model problems. It is demonstrated by the numerical examples that those algorithms are highly accurate.  相似文献   

11.
To save more Jacobian calculations and achieve a faster convergence rate, Yang [A higher-order Levenberg-Marquardt method for nonlinear equations, Appl. Math. Comput. 219(22)(2013), pp. 10682–10694, doi:10.1016/j.amc.2013.04.033, 65H10] proposed a higher-order Levenberg–Marquardt (LM) method by computing the LM step and another two approximate LM steps for nonlinear equations. Under the local error bound condition, global and local convergence of this method is proved by using trust region technique. However, it is clear that the last two approximate LM steps may be not necessarily a descent direction, and standard line search technique cannot be used directly to obtain the convergence properties of this higher-order LM method. Hence, in this paper, we employ the nonmonotone second-order Armijo line search proposed by Zhou [On the convergence of the modified Levenberg-Marquardt method with a nonmonotone second order Armijo type line search, J. Comput. Appl. Math. 239 (2013), pp. 152–161] to guarantee the global convergence of this higher-order LM method. Moreover, the local convergence is also preserved under the local error bound condition. Numerical results show that the new method is efficient.  相似文献   

12.
《国际计算机数学杂志》2012,89(16):3483-3495
In the paper [S.P. Rui and C.X. Xu, A smoothing inexact Newton method for nonlinear complementarity problems, J. Comput. Appl. Math. 233 (2010), pp. 2332–2338], the authors proposed an inexact smoothing Newton method for nonlinear complementarity problems (NCP) with the assumption that F is a uniform P function. In this paper, we present a non-monotone inexact regularized smoothing Newton method for solving the NCP which is based on Fischer–Burmeister smoothing function. We show that the proposed algorithm is globally convergent and has a locally superlinear convergence rate under the weaker condition that F is a P 0 function and the solution of NCP is non-empty and bounded. Numerical results are also reported for the test problems, which show the effectiveness of the proposed algorithm.  相似文献   

13.
In 2001, Chang studied the convergence of parallel multisplitting TOR method for H-matrices [D.W. Chang, The parallel multisplitting TOR(MTOR) method for linear systems, Comput. Math. Appl. 41 (2001), pp. 215–227]. In this paper, we point out some gaps in the proof of Chang's main results solving them. Moreover, we improve some of Chang's convergence results. A numerical example is presented in order to illustrate the improvement of Chang's convergence region.  相似文献   

14.
《国际计算机数学杂志》2012,89(16):3448-3457
Recently, Bai and Wang [On parameterized inexact Uzawa methods for generalized saddle point problems, Linear Algebra Appl. 428 (2008), pp. 2900–2932] and Gao and Kong [Block diagonally preconditioned PIU methods of saddle point problems, Appl. Math. Comput. 216 (2010), pp. 1880–1887] discussed the parameterized inexact Uzawa (PIU) method and the preconditioned parameterized inexact Uzawa (PPIU) method. In this paper, we further study the block-diagonally preconditioned PIU methods for solving singular saddle point problems, and give the corresponding convergence analysis.  相似文献   

15.
《国际计算机数学杂志》2012,89(14):3196-3198
In [Y.l. Wang, T. Chaolu, Z. Chen, Using reproducing kernel for solving a class of singular weakly nonlinear boundary value problems, Int. J. Comput. Math. 87(2) (2010), pp. 367–380], we present three algorithms to solve a class of ordinary differential equations boundary value problems in reproducing kernel space. It is worth noting that our methods can get the solution of partial integro-differential equation. In this note, we use method 2 [M. Dehghan, Solution of a partial integro-differential equation arising from viscoelasticity, Int. J. Comput. Math. 83(1) (2006), pp. 123–129] to solve a class of partial integro-differential equation in reproducing kernel space. Numerical example shows our method is effective and has high accuracy.  相似文献   

16.
In this paper, we present a fast numerical algorithm for solving nearly penta-diagonal linear systems and show that the computational cost is less than those of three algorithms in El-Mikkawy and Rahmo, [Symbolic algorithm for inverting cyclic penta-diagonal matrices recursively–Derivation and implementation, Comput. Math. Appl. 59 (2010), pp. 1386–1396], Lv and Le [A note on solving nearly penta-diagonal linear systems, Appl. Math. Comput. 204 (2008), pp. 707–712] and Neossi Nguetchue and Abelman [A computational algorithm for solving nearly penta-diagonal linear systems, Appl. Math. Comput. 203 (2008), pp. 629–634.]. In addition, an efficient way of evaluating the determinant of a nearly penta-diagonal matrix is also discussed. The algorithm is suited for implementation using computer algebra systems (CAS) such as MATLAB, MACSYMA and MAPLE. Some numerical examples are given in order to illustrate the efficiency of our algorithm.  相似文献   

17.
The growing size of multiprocessor systems increases the vulnerability to component failures. It is crucial to locate and replace faulty processors to maintain the system's high reliability. Processor fault diagnosis is essential to the reliability of a multiprocessor system and the diagnosabilities of many well-known networks (such as hierarchical hypercubes and crossed cubes [S. Zhou, L. Lin and J.-M. Xu, Conditional fault diagnosis of hierarchical hypercubes, Int. J. Comput. Math. 89(16) (2012), pp. 2152–2164 and S. Zhou, The conditional diagnosability of crossed cubes under the comparison model, Int. J. Comput. Math. 87(15) (2010), pp. 3387–3396]) have been investigated in the literature. A system is t-diagnosable if all faulty nodes can be identified without replacement when the number of faults does not exceed t, where t is some positive integer. Furthermore, a system is strongly t-diagnosable if it is t-diagnosable and can achieve (t+1)-diagnosability except for the case where a node's neighbours are all faulty. In addition, conditional diagnosability has been widely accepted as a new measure of diagnosability by assuming that any fault-set cannot contain all neighbours of any node in a multiprocessor system. In this paper, we determine the conditional diagnosability and strong diagnosability of an n-dimensional shuffle-cube SQn, a variant of hypercube for multiprocessor systems, under the comparison model. We show that the conditional diagnosability of shuffle-cube SQn (n=4k+2 and k≥2) is 3n?9, and SQn is strongly n-diagnosable under the comparison model.  相似文献   

18.
A new superconvergent method based on a sextic spline is described and analysed for the solution of systems of nonlinear singular two-point boundary value problems (BVPs). It is well known that the optimal orders of convergence could not be achieved using standard formulation of a sextic spline for the solution of BVPs. Based on the method used in our earlier research papers [J. Rashidinia and M. Ghasemi, B-spline collocation for solution of two-point boundary value problems, J. Comput. Appl. Math. 235 (2011), pp. 2325–2342; J. Rashidinia, M. Ghasemi, and R. Jalilian, An o(h 6) numerical solution of general nonlinear fifth-order two point boundary value problems, Numer. Algorithms 55(4) (2010), pp. 403–428], we construct a new O(h 8) locally superconvergent method for the solution of general nonlinear two-point BVPs up to order 6. The error bounds and the convergence properties of the method have been proved theoretically. Then, the method is extended to solve the system of nonlinear two-point BVPs. Some test problems are given to demonstrate the applicability and the superconvergent properties of the proposed method numerically. It is shown that the method is very efficient and applicable for stiff BVPs too.  相似文献   

19.
《国际计算机数学杂志》2012,89(7):1243-1252
Some preconditioners for accelerating the classical iterative methods are given in Zhang et al. [Y. Zhang and T.Z. Huang, A class of optimal preconditioners and their applications, Proceedings of the Seventh International Conference on Matrix Theory and Its Applications in China, 2006. Y. Zhang, T.Z. Huang, and X.P. Liu, Modified iterative methods for nonnegative matrices and M-matrices linear systems, Comput. Math. Appl. 50 (2005), pp. 1587–1602. Y. Zhang, T.Z. Huang, X.P. Liu, A class of preconditioners based on the (I+S(α))-type preconditioning matrices for solving linear systems, Appl. Math. Comp. 189 (2007), pp. 1737–1748]. Another kind of preconditioners approximating the inverse of a symmetric positive definite matrix was given in Simons and Yao [G. Simons, Y. Yao, Approximating the inverse of a symmetric positive definite matrix, Linear Algebra Appl. 281 (1998), pp. 97–103]. Zhang et al. ’s preconditioners and Simons and Yao's are generalized in this paper. These preconditioners are all of low construction cost, which all could be taken as approximate inverse of M-matrices. Numerical experiments of these preconditioners applied with Krylov subspace methods show the effectiveness and performance, which also show that the preconditioners proposed in this paper are better approximate inverse for M-matrices than Simons’.  相似文献   

20.
《国际计算机数学杂志》2012,89(6):1351-1369
We use more precise majorizing sequences than in earlier studies such as [J. Appell, E. De Pascale, J.V. Lysenko, and P.P. Zabrejko, New results on Newton–Kantorovich approximations with applications to nonlinear integral equations, Numer. Funct. Anal. Optim. 18 (1997), pp. 1–17; I.K. Argyros, Concerning the ‘terra incognita’ between convergence regions of two Newton methods, Nonlinear Anal. 62 (2005), pp. 179–194; F. Cianciaruso, A further journey in the ‘terra incognita’ of the Newton–Kantorovich method, Nonlinear Funct. Anal. Appl. 15 (2010), pp. 173–183; F. Cianciaruso and E. De Pascale, Newton–Kantorovich approximations when the derivative is Hölderian: Old and new results, Numer. Funct. Anal. Optim. 24 (2003), pp. 713–723; F. Cianciaruso, E. De Pascale, and P.P. Zabrejko, Some remarks on the Newton–Kantorovich approximations, Atti Sem. Mat. Fis. Univ. Modena 48 (2000), pp. 207–215; E. De Pascale and P.P. Zabrejko, Convergence of the Newton–Kantorovich method under Vertgeim conditions: A new improvement, Z. Anal. Anwendvugen 17 (1998), pp. 271–280; J.A. Ezquerro and M.A. Hernández, On the R-order of convergence of Newton's method under mild differentiability conditions, J. Comput. Appl. Math. 197 (2006), pp. 53–61; J.V. Lysenko, Conditions for the convergence of the Newton–Kantorovich method for nonlinear equations with Hölder linearizations (in Russian), Dokl. Akad. Nauk BSSR 38 (1994), pp. 20–24; P.D. Proinov, New general convergence theory for iterative processes and its applications to Newton–Kantorovich type theorems, J. Complexity 26 (2010), pp. 3–42; J. Rokne, Newton's method under mild differentiability conditions with error analysis, Numer. Math. 18 (1971/72), pp. 401–412; B.A. Vertgeim, On conditions for the applicability of Newton's method, (in Russian), Dokl. Akad. N., SSSR 110 (1956), pp. 719–722; B.A. Vertgeim, On some methods for the approximate solution of nonlinear functional equations in Banach spaces, Uspekhi Mat. Nauk 12 (1957), pp. 166–169 (in Russian); English transl.: Amer. Math. Soc. Transl. 16 (1960), pp. 378–382; P.P. Zabrejko and D.F. Nguen, The majorant method in the theory of Newton–Kantorovich approximations and the Pták error estimates, Numer. Funct. Anal. Optim. 9 (1987), pp. 671–684; A.I. Zinc?enko, Some approximate methods of solving equations with non-differentiable operators (Ukrainian), Dopovidi Akad. Nauk Ukraïn. RSR (1963), pp. 156–161] to provide a semilocal convergence analysis for Newton's method under Hölder differentiability conditions. Our sufficient convergence conditions are also weaker even in the Lipschitz differentiability case. Moreover, the results are obtained under the same or less computational cost. Numerical examples are provided where earlier conditions do not hold but for which the new conditions are satisfied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号