共查询到20条相似文献,搜索用时 15 毫秒
1.
研究了碳纳米管(CNTs)/环氧树脂复合材料的分散性能及电性能。探讨了碳纳米管的含量、管径和稀释剂的用量对环氧树脂电学性能的影响,并用透射电子显微镜(TEM)和扫描电子显微镜(SEM)对其进行表征。结果表明,碳纳米管的分散和含量对环氧树脂的电性能影响很大,而加入碳纳米管能够使环氧树脂由绝缘体变为导体(电阻率〈^10mΩ·cm)。 相似文献
2.
Arash Montazeri Jafar Javadpour Alireza Khavandi Abbas Tcharkhtchi Ali Mohajeri 《Materials & Design》2010
Untreated and acid-treated multi-walled carbon nanotubes (MWNT) were used to fabricate MWNT/epoxy composite samples by sonication technique. The effect of MWNT addition and their surface modification on the mechanical properties were investigated. Modified Halpin–Tasi equation was used to evaluate the Young’s modulus and tensile strength of the MWNT/epoxy composite samples by the incorporation of an orientation as well as an exponential shape factor in the equation. There was a good correlation between the experimentally obtained Young’s modulus and tensile strength values and the modified Halpin–Tsai theory. The fracture surfaces of MWNT/epoxy composite samples were analyzed by scanning electron microscope. 相似文献
3.
Lei Chen Hao Jin Zhiwei Xu Jialu Li Qiwei Guo Mingjing Shan Caiyun Yang Zhen Wang Wei Mai Bowen Cheng 《Journal of Materials Science》2015,50(1):112-121
To improve the interfacial properties of carbon fibers/epoxy composites, we introduced a gradient interphase reinforced by graphene sheets between carbon fibers and matrix with a liquid phase deposition strategy. Interlaminar shear strength and flexural strength of the composites are both improved. The interfacial reinforcing mechanisms are explored by analyzing the structure of interfacial phase with linear scanning system of scanning electron microscope and atomic force microscope. Results indicate that carbon element shows a graded dispersion in the interface region and a gradient interface layer with the modulus decreasing from fibers and matrix is found to be built. To verify the effect of gradient interphase on the interfacial properties of composites, the mixture of carbon fiber/graphene/epoxy is sonicated before curing to disperse graphene sheets in matrix homogeneously. As a result, gradient interphase structures are disappeared and interfacial performance of composites is found to be weakened. The role of gradient interface layers in enhancing interfacial performances is further proved from a different angle. 相似文献
4.
《Composites Science and Technology》2007,67(3-4):406-412
Multi-walled carbon nanotube (MWCNT)/polyetherimide (PEI) nanocomposite films have been prepared by casting and imidization. A homogeneous dispersion of MWCNTs throughout the PEI matrix is observed by scanning electron microscopy of fracture surfaces, which shows not only a fine dispersion of MWCNTs but also strong interfacial adhesion with the matrix, as evidenced by the presence of many broken but strongly embedded carbon nanotubes (CNTs) in the matrix and by the absence of debonding of CNTs from the matrix. Differential scanning calorimetry and dynamic mechanical analysis show that the glass transition temperature of PEI increases by about 10 °C by the addition of 1 wt% MWCNTs. Mechanical testing shows that for the addition of 1 wt% MWCNTs, the elastic moduli of the nanocomposites are significantly improved by about 250% while the tensile strength is comparable to that of the matrix. This improvement is due to the strong interfacial interaction between the MWCNTs and the PEI matrix which favors stress transfer from the polymer to the CNTs. 相似文献
5.
A. Pegoretti C. Della Volpe M. Detassis C. Migliaresi H.D. Wagner 《Composites Part A》1996,27(11):1067-1074
A study of the thermomechanical stability of the fibre-matrix interphase in carbon/epoxy composites has been carried out. The thermodynamic work of adhesion has been evaluated at room temperature by wetting measurements. The interfacial shear stress transfer level τ for sized and desized carbon fibre has been measured as a function of temperature by means of a single-fibre fragmentation test. As the test temperature increased τ values were found to decrease, with values being higher for the desized carbon fibre. The dependence of interfacial shear stress transfer on bulk matrix mechanical properties (modulus and shear strength) has also been discussed. Dynamic mechanical measurements performed on single-bundle composites confirmed the better thermomechanical stability of the desized fibre interphase. 相似文献
6.
Mechanical reinforcement of polymer matrices loaded by carbon nanotubes is expected to benefit by both the high aspect ratio and the very high modulus of such nanofillers and, consequently, it depends not only by their content within the hosting system but also by the state of dispersion. This work analyses the effect on the bending modulus of dispersed multi-walled carbon nanotube (MWCNT) into an epoxy system. Results indicate that reinforcement efficiency is characterised by two limiting behaviours whose transition region coincides with the development of a percolative network of nanotubes. Well below the percolation threshold, the carbon nanotubes, contribute to the composite modulus with their exceptional modulus (in this case a value of 1.780 TPa was found), whereas it dramatically decreases above this limit due to the reduction of the effective aspect ratio and the micron sized cluster formation. An estimate of the maximum reinforcement induced by carbon nanotubes has been proposed based on percolation and stress transfer theory for large aspect ratio fillers. 相似文献
7.
Balani K Bakshi SR Chen Y Laha T Agarwal A 《Journal of nanoscience and nanotechnology》2007,7(10):3553-3562
Al2O3 ceramic reinforced with 4-wt% multiwalled carbon nanotube (CNT) is plasma sprayed for improving the fracture toughness of the nanocomposite coating. Two different methodologies of CNT addition have been adopted in the powder feedstock to assist CNT dispersion in the nano-Al2O3 matrix. First, spray-dried nano-Al2O3 agglomerates are blended with 4 wt% CNT as powder-feedstock, which is subsequently plasma sprayed resulting in the fracture toughness improvement of 19.9%. Secondly, spray dried composite nano-Al2O3 and 4 wt% CNT powder was used as feedstock for attaining improved dispersion of CNTs. Plasma sprayed coating of composite spray dried powder resulted in increase of 42.9% in the fracture toughness. Coating synthesized from the blended powder displayed impact alignment of CNTs along splat interface, and CNTs chain loop structure anchoring the fused Al2O3 melt whereas coating synthesized from composite spray dried powder evinced anchoring of CNTs in the solid state sintered region and CNT mesh formation. Enhanced fracture toughness is attributed to significance of CNT dispersion. 相似文献
8.
The effects of multi-walled carbon nanotubes (MWNTs) on fracture behavior of epoxy under mixed mode I/II loading have been studied. A number of test specimens based on different contents of MWNTs were prepared and the fracture tests were carried out. The increase in fracture resistance of the nanocomposite depended on the mode mixity. To find the reason, the fracture mechanisms in different modes of fracture were studied by examination of the fracture surfaces. It was found that in addition to the mechanisms, which contribute in mode I fracture, some extra mechanisms participate in mixed mode and mode II loading. 相似文献
9.
碳纳米管/导电聚苯胺纳米复合纤维的合成与表征 总被引:12,自引:1,他引:12
为实现碳纳米管在树脂内形成一体化导电网络,从而制备出透明导电性能最优的有机透明导电涂层,必须把导电性的碳纳米管纤维在树脂内有效地组装成一体化导电结构网络。本文报道运用在树脂内可以自组装的导电苯胺来实现碳纳米管纤维自组装的方法.合成出了导电聚苯胺纳米薄膜均匀包覆的碳纳米管/导电聚苯胺纳米复合纤维.并运用透射电镜、傅立叶红外光谱以及四探针法表面电阻测试仪对合成出的具有精细微观结构的纳米复合纤维进行了表征.发现合成出了理想的碳纳米管/导电聚苯胺纳米复合纤维,并且其导电性较碳纳米管和导电聚苯胺自身都有大幅度的提高。这种特殊结构的纳米复合纤维的制备为组装高性能的聚合物基透明导电涂层奠定了坚实基础,而且这种自组装方法为各种纳米纤维的组装提供了可能。 相似文献
10.
碳纳米管(CNT)优异的力学性能使其成为复合材料优选的增强体。CNT/聚合物复合材料的力学性能主要受其界面结合性能的影响。综述了CNT/聚合物复合材料界面结合性能的研究方法和研究现状。对CNT/聚合物复合材料界面结合性能的研究,实验上采用微观表征技术、拉曼光谱分析技术和纳米力学拔出法,分子模拟方法则是通过对CNT施加位移或外力模拟CNT从聚合物基体中的抽拔过程。概述了聚合物的类型、晶态结构以及CNT的手性、功能化处理等因素对CNT/聚合物复合材料界面结合性能的影响,并展望了CNT/聚合物复合材料界面结合性能未来研究的重点方向。 相似文献
11.
《材料与设计》2015
Conductive polymer nanocomposites based on carbon nanotubes (CNTs) have wide range of applications in the electronics and energy sectors. For many of these applications, such as the electromagnetic interference (EMI) shielding, high nanofiller loading is typically needed to achieve the desired properties. The high nanofiller concentration deteriorates the composite's tensile strength due to the increase in nanofiller aggregation. In this work, highly conductive CNT/polypropylene (PP) nanocomposite with improved tensile strength was prepared by melt mixing. The effects of CNT content on the processing behavior, microstructure, mechanical and electrical properties of the nanocomposite were investigated. Scanning electron microscopy was used to investigate the composite microstructure. Good level of CNT dispersion with remarkable adhesion at the CNT/PP interface was observed. Based on a theoretical model, the interfacial strength was estimated to be in the range of 36–58 MPa. As a result of this microstructure, significant enhancement in ultimate tensile strength was reported with the increase of CNT content. The tensile strength of the 20 wt.% CNT/PP nanocomposite was 80% higher than that of the unfilled PP. Moreover, and due to the good dispersion of CNT particles, an electrical percolation threshold concentration of 0.93 wt.% (0.5 vol.%) was obtained. 相似文献
12.
In this paper, polyaniline/multiwall carbon nanotube (PANI/MWCNT) composites were fabricated through an in situ polymerization method and were applied for the detection of aromatic hydrocarbon vapors. The composites were characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy, and Raman spectroscopy. The SEM results showed that the PANI was uniformly coated on the MWCNT, and the coating thickness was dependent on the mass ratio of aniline monomer to MWCNT. The response to aromatic hydrocarbon vapors was investigated in several hundreds ppm ranges. The sensor showed an increase in conductivity, and the maximum response measured at 1000 ppm was several tens of percent. 相似文献
13.
采用一种导电材料预制体-单壁碳纳米管(Single-wall carbon nanotube,SWCNT)无纺布与环氧树脂复合制备了电磁屏蔽复合材料,并对所制复合材料的电磁屏蔽性能进行了表征。结果表明:所制复合材料对电磁波的屏蔽效率随SWCNT无纺布厚度的增加而增加。在较低的SWCNT无纺布填加量下所制复合材料可以实现对低频电磁波较高的屏蔽效率。不同于填加粉体导电材料所制电磁屏蔽复合材料,作为导电材料预制体使用的SWCNT无纺布是一个独立的整体导电薄膜,可以直接引入到基体当中,不存在分散问题。并且通过简单的导电预制体多层叠加的方式即可实现复合材料更高的屏蔽效率。 相似文献
14.
Toshio Ogasawara Keiji Onta Shinji Ogihara Tomohiro Yokozeki Eiichi Hara 《Composite Structures》2009,90(4):482-489
This paper presents results of the feasibility of carbon/epoxy composites (CFRP) as a future helicopter flexbeam material. Torsional behaviors of unidirectional CFRP and glass/epoxy composites (GFRP) with the same resin matrix were investigated. The initial torsional rigidity of CFRP was almost identical to that of GFRP. The torsional rigidities calculated using finite element analyses (FEA) agreed with the experimental results: the torsional rigidities are governed mainly by the material’s shear stiffness. Torsion fatigue tests were also conducted by controlling the angle of twist of the sinusoidal wave under a constant tensile axial load. No catastrophic failure occurred with either GFRP or CFRP, although decreased amplitudes of torque and torsional rigidities were observed according to the number of cycles. Results of X-ray CT inspections and numerical calculation by FEA revealed that degradation of a torsional rigidity is caused mainly by splitting crack propagation along the fiber direction. The torsion fatigue life of CFRP was superior to that of GFRP. Consequently, results confirmed that CFRP exhibits excellent properties as a torsional element of a helicopter flexbeam in terms of torsional rigidity and tension–torsion fatigue behaviors. 相似文献
15.
以乙炔为碳源、二茂铁为催化剂,通过雾化辅助化学气相沉积法(AACVD)制备多尺度杂化材料CNT/CF.利用扫描电镜(SEM)、透射电镜(TEM)表征所制CNr/CF的形貌及其微观结构.结果表明:在反应温度750℃~800℃、沉积30min的条件下,碳纳米管(CNTs)能够以较高的密度均匀生长在炭纤维表面形成多尺度杂化材料CNr/CF.单纤维拉伸测试表明:在700℃~800℃、沉积30min的条件下所制CNT/CF的单纤维拉伸强度降低幅度小于13%;在反应温度750℃、沉积40 min的条件下、单纤维拉伸强度降低幅度小于10%.纤维悬挂液滴法研究表明:所制CNT/CF比原始炭纤维对环氧树脂有更好的浸润性能. 相似文献
16.
17.
Ma Huan Gao Yang Liu Wei Farha Farial Islam Zhang Kun Guo Lamei Xu Fujun 《Journal of Materials Science》2021,56(23):13156-13164
Journal of Materials Science - Flexible strain sensors with high sensitivity are indeed critical for smart wearable devices, they are used for detecting the tiny deformation of human skin induced... 相似文献
18.
Noa Lachman Hui Qian Matthieu Houllé Julien Amadou Milo S. P. Shaffer H. Daniel Wagner 《Journal of Materials Science》2013,48(16):5590-5595
Growing carbon nanotubes (CNTs) on the surface of fibers has the potential to modify fiber–matrix interfacial adhesion, enhance composite delamination resistance, and possibly improve toughness. In the present study, aligned CNTs were grown upon carbon fabric via chemical vapor deposition. Continuously monitored single-fiber composite fragmentation tests were performed on pristine and CNT-grafted fibers embedded in epoxy, and single-laminate compact-tension specimens were tested for fracture behavior. A significant increase (up to 20 %) was observed in the interfacial adhesion, at the cost of a decrease in the fiber tensile strength. As a result, the maximum load of the composite was decreased, but its residual load-bearing capacity more than doubled. The likely sources of these effects are discussed, as well as their implications. 相似文献
19.
In this paper, axisymmetric natural frequencies of nanocomposite cylinders reinforced by straight single-walled carbon nanotubes are presented based on a mesh-free method. The straight carbon nanotubes (CNTs) are oriented, aligned or randomly or locally aggregated into some clusters. Volume fractions of the CNTs and clusters are assumed to be functionally graded along the thickness, so material properties of the carbon nanotube reinforced composite cylinders are variable and are estimated based on the Eshelby–Mori–Tanaka approach. In the mesh-free analysis, moving least squares shape functions are used for an approximation of the displacement field in the weak form of motion equation, and the transformation method is used for the imposition of essential boundary conditions. The effects of orientation and aggregation of the functionally graded CNT are studied. It is observed that kind of distributions, aggregation or even randomly orientations of CNTs has significant effect on the effective stiffness and frequency parameter. 相似文献
20.
Effect of temperature on interfacial sliding in single-walled carbon nanotube polycarbonate composites is investigated experimentally. We show that interfacial slip at the tube-polymer interfaces can be activated at relatively low dynamic strain levels ( approximately 0.35%) by raising temperature to approximately 90 degrees C. We attribute this to increased mobility of the polymer chain backbones at elevated temperatures and thermal relaxation of the radial compressive stresses at the tube-polymer interfaces. These results show the potential of polymer nanocomposites as high-temperature damping materials for vibration and acoustic suppression in a variety of dynamic systems. 相似文献