首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 281 毫秒
1.
离散纵标节块法是一种求解六角形中子输运方程的有效方法。本文基于六角形横向积分离散纵标方程,解析得到横向积分通量出射通量与入射通量的关系,并根据类似于扩散方法的六角形输运节块中子平衡方程形式,得到了一种离散纵标六角形节块法数值迭代策略。由于离散纵标法收敛速度较慢,本文根据粗网有限差分(CMFD)技术导出离散纵标六角形CMFD加速方法。数值计算结果表明,该CMFD加速技术能取得约16倍的加速效果。  相似文献   

2.
采用3阶简化球谐函数(SP3)方法将中子输运方程转化为2个耦合的、数学形式与扩散方程相同的方程,建立一种扩散节块方法求解SP3方程组。该节块方法,通过将节块内的精细中子通量密度分布展开成指数函数和的形式获得节块响应关系,并用于求解边界分流,同时用中子平衡方程构造节块平均中子通量密度。数值结果表明:该方法适用于不同的空间几何网格形状,具有良好的并行特性;节块SP3程序NSPn的计算速度约为节块SN(N=4)程序DNTR的6倍。  相似文献   

3.
CMFD加速在特征线法输运计算中的应用   总被引:2,自引:0,他引:2  
为解决特征线法求解复杂几何条件下中子输运问题收敛速度慢的问题,将粗网扩散计算中的粗网有限差分(CMFD:Coarse-Mesh Finite Difference)加速方法运用于中子输运计算中.采用粗网有限差分加速方法对C5G7 MOX基准问题以及自定义的69群检验算例的计算表明,CMFD加速是一种十分高效的方法,可显著地提高特征线法求解中子输运问题的收敛速度,且问题规模越大,加速效果越明显.  相似文献   

4.
采用两节块方法求解细网3阶简化球谐函数(SP3)中子输运方程,该方法只对零阶角通量密度的拉普拉斯算子进行节块法处理,对应的零阶通量密度采用2阶展开,横向泄漏采用零阶近似;以此方法开发了适用于细网全堆输运计算的CORCA-PIN程序,该程序同时集成了细网有限差分方法。验证算例采用KAIST 3A基准问题及扩展三维问题。数值结果表明,采用栅元1×1划分的两节块法具有可接受的计算精度,而计算时间只有相同精度的细网有限差分方法的11%。因此,本文提出的两节块方法适用于细网SP3中子输运方程计算。   相似文献   

5.
本文基于横向积分离散纵标方程,解析得到横向积分通量中出射通量与入射通量的关系,并根据类似于扩散方程节块展开法的输运节块中子平衡方程形式,得到了一种高效的节块离散纵标法数值迭代策略。数值结果表明,本文提出的方法可行且数值结果正确。此外,粗网有限差分(CMFD)加速技术在节块离散纵标法中也取得了非常好的应用效果。  相似文献   

6.
为快速、精确实现反应堆堆芯多群中子扩散计算,采用基于横向积分技术的半解析节块方法(SANM)求解中子扩散方程,并结合解析粗网有限差分(ACMFD)方法,导出了基于半解析节块方法的粗网有限差分方程(CMFD)耦合系数。在半解析节块方法中,散射源和裂变源采用勒让德多项式,并在此假设下解析求解中子扩散横向积分方程。分别采用了零次、二次和四次勒让德多项式展开,以适应粗网和细网的计算。数值计算结果表明,所提出的方法具有很高的计算精度和计算效率。  相似文献   

7.
求解两群多维中子扩散方程的稳态非线性解析节块方法是基于非线性迭代技术与解析节块方法而建立的,并在计算程序NODAN中实现。使用了粗网有限差分方法(CMFD)作为整体耦合计算方法,同时引入耦合修正因子对低阶近似中的耦合关系加以修正。利用解析方法求解局部两节块问题,用以确定耦合修正因子,并在计算过程中通过周期地更新修正因子,迫使CMFD近似中的表面流与高阶方法解得的表面流相等。建立了一种稳定技术,用于克服在解析求解两节块问题中可能遇到的数值不稳定问题。这种非线性方法与有效的数值方法和稳定技术相结合,为求解节块方程提供了一条高效的途径。使用程序NODAN对几种轻水堆基准问题进行了计算,数值结果表明,这种节块方法可以得到精确的结果,与常规节块方法NEMC相比,计算效率显著提高。  相似文献   

8.
求解两群多维中子扩散方程的稳态非线性解析节块方法是基于非线性迭代技术与解析节块方法而建立的,并在计算程序 NODAN中实现。使用了粗网有限差分方法 (CMFD) 作为整体耦合计算方法,同时引入耦合修正因子对低阶近似中的耦合关系加以修正。利用解析方法求解局部两节块问题,用以确定耦合修正因子,并在计算过程中通过周期地更新修正因子,迫使 CMFD 近似中的表面流与高阶方法解得的表面流相等。建立了一种稳定技术,用于克服在解析求解两节块问题中可能遇到的数值不稳定问题。这种非线性方法与有效的数值方法和稳定技术相结合,为求解节块方程提供了一条高效的途径。使用程序 NODAN 对几种轻水堆基准问题进行了计算,数值结果表明, 这种节块方法可以得到精确的结果,与常规节块方法 NEMC 相比,计算效率显著提高。  相似文献   

9.
空间区域分解适合于大规模并行求解中子输运方程,但是子区域的增多会导致收敛变慢。为了克服这一缺点,采用粗网有限差分(CMFD)技术对空间区域分解的并行特征线方法(MOC)进行加速。使用ScaLAPACK求解CMFD粗网扩散方程;CMFD的粗网解既用来修正细网标通量,又用于修正内界面角通量。一维MOC数值结果表明,对于区域分解并行的MOC,CMFD技术是一种十分高效的加速方法,可以显著提高收敛速度。  相似文献   

10.
空间区域分解适合于大规模并行求解中子输运方程,但是子区域的增多会导致收敛变慢。为了克服这一缺点,采用粗网有限差分(CMFD)技术对空间区域分解的并行特征线方法(MOC)进行加速。使用ScaLAPACK求解CMFD粗网扩散方程;CMFD的粗网解既用来修正细网标通量,又用于修正内界面角通量。一维MOC数值结果表明,对于区域分解并行的MOC,CMFD技术是一种十分高效的加速方法,可以显著提高收敛速度。  相似文献   

11.
计算效率是制约pin-by-pin计算工程应用的主要因素之一。本文利用三维扩散的非均匀变分节块法的非均匀节块的描述能力,在不改变原问题栅元均匀化材料分布的前提下,将传统pin-by-pin计算中使用的均匀材料细网剖分方式替代为非均匀材料粗网剖分方式(粗网加速方法),既能保证pin-by-pin的计算分辨率,又能显著降低红 黑迭代所需的浮点数操作数目,减小内迭代的计算代价。针对外迭代,运用广义矩阵分离加速(GPM)算法和粗网有限差分(CMFD)算法提高源迭代的收敛速度,降低计算时间。数值结果表明,提出的加速算法能在保证计算精度的前提下,有效提高pin-by-pin计算的效率。  相似文献   

12.
As an effort to establish a fast, yet accurate multigroup nodal solution method that is crucial in repeated static and transient calculations for advanced reactors, the source expansion form of the semi-analytic nodal method (SANM) is introduced within the framework of the coarse mesh finite difference (CMFD) formulation. The source expansion is to expand the analytic form of the source appearing in the groupwise neutron diffusion equation with a set of orthogonal polynomials in order to obtain a group decoupled analytic solution. Both one- and two-node formulations are examined to determine the best nodal kernel. For the acceleration, a two-level CMFD scheme is established employing a multigroup and two-group CMFD. In addition, an alternative two-node direct SANM formulation with a quartic polynomial is examined to assess the direct vs. iterative resolution of the group coupling. The performance of the CMFD formulation with three different multigroup SANM nodal kernels is examined for a wide variety of multigroup benchmark problems including several MOX-loaded LWR cores and large FBR cores. It is demonstrated that superior accuracy is achievable with all the SANM kernels while the iterative two-node SANM kernel outperforms the others in the multigroup calculations employing more than two groups, and the two-level CMFD formulation is quite efficient in the acceleration of the outer iteration.  相似文献   

13.
改进了粗网差分加速的节块法的算法,在解两节块问题时,将所解的矩阵方程退化为4阶方程;给出了节块左右两界面的净中子流差值的公式,在已知初始节块的中子流的条件下,利用此公式可直接计算各节块界面的中子流。改进的算法提高了节块法计算的速度。  相似文献   

14.
A parallel production code, SCOPE2, has been developed for advanced calculations in the reactor core design of PWRs. In SCOPE2, the multi-group diffusion and/or SP3 transport equations are solved by the Red/Black iterative method within the framework of the finite difference method or the advanced nodal method without non-linear iterations. The effects due to pin-cell homogenization are taken into account by using the SPH factors.

In this paper, calculation methods needed for fast computation are derived including efficient response matrix formulation of the nodal-SP3 method, an analytic solution of the flux moments in the nodal-SP3 transport equations, and coarse-group coarse-mesh diffusion acceleration method. It was found that the present pin-by-pin nodal-SP3 method was more accurate than the finite difference SP3 method with a small additional computational cost in the same meshing scheme.

Tracking calculations of a commercial PWR plant by SCOPE2 revealed that the present model accurately predicted the power distribution and critical boron concentration. A set of depletion calculations in a typical design scheme can be completed within a few hours running on a PC-cluster (16 processors) for the full-core geometry of a 3-loop PWR with 340×3407times;26 meshes based on the 9-group pin-by-pin nodal-SP3 method.  相似文献   

15.
The pin-by-pin fine-mesh core calculation method is considered as a candidate next-generation core calculation method for BWR. In this study, the diffusion and simplified P3 (SP3) theories are applied to the BWR pin-by-pin fine-mesh calculation. The performances of the diffusion and SP3 theories for cell-homogeneous pin-by-pin fine-mesh calculation for BWR are evaluated through comparison with a cell-heterogeneous detailed transport calculation by the method of characteristics (MOC). Two-dimensional, 2 × 2 multi-assemblies geometry is used to compare the prediction accuracies of the diffusion and SP3 theories. The 2 × 2 multi-assemblies geometry consists of 9 × 9 UO2 fuel assemblies that have two different enrichment splittings. To minimize the cell-homogenization error, the SPH method is applied for the pin-by-pin fine-mesh calculation. The SPH method is a technique that reproduces a result of heterogeneous calculation using that of homogeneous calculation. The calculation results indicated that the diffusion theory shows a discrepancy larger than that of the SP3 theory on the pin-wise fission rate distribution. In contrast to the diffusion theory, the SP3 theory shows a much better accuracy on the pin-wise fission rate distribution. The computation time using the SP3 theory is about 1.5 times longer than that using the diffusion theory. The BWR core analysis consists of various calculations, e.g., the cross section interpolation, neutron flux calculation, thermal hydraulic calculation, and burn-up calculation. The function of the calculation time for the neutron flux calculation is usually less than half in the typical BWR core analysis. Therefore, the difference in the calculation time between the diffusion and SP3 theories would have no significant impact on the calculation time of the BWR core analysis. For these reasons, the SP3 theory is more suitable than the diffusion theory and is expected to have sufficient accuracy for the 2 × 2 multi-assemblies geometry used in this study, which simulates a typical situation of the actual BWR core.  相似文献   

16.
This article presents the convergence analysis of the coarse mesh finite difference (CMFD) method applied to two-group (2-G) three-dimensional (3D) neutron diffusion problem. Two CMFD algorithms are examined: one-node (1-N) CMFD and two-node (2-N) CMFD. Two test problems are used for the study of the convergence behavior: a model problem of homogeneous 2-G 3D eigenvalue problem and the NEACRP LWR transient benchmark problem. The convergence rates of the 1-N and 2-N CMFD algorithms are numerically measured in terms of the convergence of current correction factors (CCFs). The numerical test results are presented as well as the comparison with the previous analytical study. Overall, 1-N CMFD with the CCF relaxation shows a comparable performance to 2-N CMFD for the realistic 3D rod ejection transients.  相似文献   

17.
为能直接给出安全分析所需的最热棒功率而不引入组件均匀化近似和精细功率重构近似,本文研究了基于栅元均匀化的pin-by-pin中子动力学计算方法。通过全隐式向后差分对多群时空中子动力学方程组的时间变量进行离散,采用指数函数展开节块-SP3(EFEN-SP3)方法求解含裂变介质的多群中子固定源方程组,通过高阶源展开技术消除了中子源分布与缓发中子先驱核分布形状不一致的问题。采用Ks因子、LW外推和粗网再平衡等加速技术提高计算效率。三维pin-by-pin中子动力学问题的数值结果表明:pin-by-pin中子动力学计算能直接给出单棒功率密度分布;高阶源展开技术可有效抑制计算偏差随时间步的累加效应;加速技术可将SP3动力学计算的求解速度提高134.9倍。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号