首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Quicklime and quicklime-fly ash-based stabilization/solidification (S/S) effectiveness was evaluated by performing semi-dynamic leaching tests (American Nuclear Society 16.1). Artificial soil samples, contaminated with arsenic trioxide (As2O3) as well as field soil samples contaminated with arsenic (As) were tested. The artificial soils were prepared by mixing amounts of kaolinite or montmorillonite with fine quartz sand. The S/S effectiveness was evaluated by measuring effective diffusion coefficients (De) and leachability indices (LX). Treatment was most effective in kaolinite-based artificial soils treated with quicklime and in quicklime-fly ash treated field soils. The experimental results indicate that De values were lowered as a result of S/S treatment. Upon treatment LX values were higher than 9, suggesting that S/S treated soils are acceptable for "controlled utilization". Based on a model developed by de Groot and van der Sloot [G.J. de Groot, H.A. van der Sloot, in: T.M. Gilliam, C.C. Wiles (Eds.), Stabilization and Solidification of Hazardous, Radioactive, and Mixed Wastes, vol. 2, ASTM STP 1123, ASTM, PA, 1992, p. 149], the leaching mechanism for all of the treated soils was found to be controlled by diffusion. The effect of soluble silica (Si) on As leachability was also evaluated. When soluble Si concentration was less than 1 ppm, As leachability was the lowest. The controlling mechanism of As immobilization whether sorption, precipitation, or inclusion was also evaluated. It was determined that precipitation was the dominant mechanism.  相似文献   

2.
Solidification/stabilization (S/S) of hazardous iron oxide coated cement (IOCC) spent adsorbent containing arsenic (As(III)) was investigated in the present study. Cement and lime-based S/S effectiveness was evaluated by performing semi-dynamic leach tests. The S/S effectiveness was evaluated by measuring effective diffusion coefficients (D(e)) and leachability indices (LX). It was found that though cement or lime alone were efficient in preventing arsenic leaching (D(e) being in range of 10(-10) to 10(-12) for all the matrices) from the solidified matrices, the best combination for arsenic containment in the matrix was obtained when a mixture of cement and lime was used. The LX values for all the matrices were higher than 10, suggesting that the S/S treated arsenic sludge are acceptable for "controlled utilization". Calcite formation along with precipitation and conversion into non-soluble forms (calcium arsenite, calcium hydrogen arsenate hydrates, calcium hydrogen arsenates, etc.) were found to be the responsible mechanism for low leaching of arsenic from the solidified/stabilized samples. A linear relationship between cumulative fraction (CFR) of arsenic leached and square root of leach time (R(2) ranging from 0.90 to 0.94) suggested that the diffusion is the responsible mechanism for arsenic leaching. Thus, cement and lime show effective containment of the As(III) within the matrix thus indicating S/S by cement and lime, which is also a low-cost option, as a suitable management option for the toxic As(III) sludge.  相似文献   

3.
The leaching of major and trace elements from concrete made with Portland cement, fly ash and GGBS (ground granulated blast-furnace slag) was studied using pH static availability and tank leach tests. The release of substances during the tank leach test occurs by surface dissolution of phases at the concrete surface and diffusion inside the concrete, the amounts depending on the phases controlling solubility and concrete porosity. Alkali release is controlled by diffusion and is thus reduced by lower water/binder ratios and the replacement of Portland cement by fly ash. Ca, Al and S release occurs mainly by surface dissolution of portlandite and AFt/AFm, respectively. The release of V is determined by surface dissolution of V substituted ettringite and/or calcium vanadate. Although fly ash can increase the total V content of concrete, enhancing release, only 2% of the total V content in concrete was available for release.  相似文献   

4.
Municipal solid waste incinerator (MSWI) fly ash was regarded as a hazardous material because concentrations of TCLP leaching solution exceeded regulations. Previous studies have investigated the characteristics of thermally treated slag. However, the emissions of pollutant during the thermal treatment of MSWI fly ash have seldom been addressed. The main objective of this study was to evaluate the emission of Pb and PAHs from thermally co-treated MSWI fly and bottom ash process. The experimental parameters included the form of pretreatment, the proportion of bottom ash (bottom ash/fly ash, B/F=0, 0.1 and 1) and the retention time. The toxicity of thermally treated slag was also analyzed. The results indicated that (1) Pb emission occurred only in the solid phase and that PAHs were emitted from both solid and gas phases during thermal treatment process. (2) Washing pretreatment reduced not only the TCLP leaching concentration of Pb (from 15.75 to 1.67 mg/L), but also the emission of PAHs from the solid phase during thermal treatment process. (3) Adding bottom ash reduced the TCLP leaching concentration of thermally treated slag. (4) The concentration of Pb emission increased with retention time. (5) The thermal treatment reduced the toxicity of raw fly ash effectively, the inhibition ratio of raw fly ash and thermal treated slag were 98.71 and 18.35%, respectively.  相似文献   

5.
In this paper, investigations were undertaken to formulate the properties of fly ash-calcium sulfoaluminate (CSA) cement matrix by blending MSW fly ash with CSA cement. The compressive strength, pore structure, hydration phases, and leaching behavior of Zn and Pb doped MSW fly ash-CSA cement matrices were determined by XRD, MIP, DSC, FTIR, EDX, TCLP leaching test and other experiments. The results showed that the addition of MSW fly ash to form fly ash-CSA cement matrix reduced the compressive strengths of matrices and made the pore distribution of matrices coarser, compared to that of pure CSA cement matrix. However, fly ash-CSA cement matrix could effectively immobilize high concentration of heavy metal such as lead and zinc with much lesser leaching of TCLP. Besides ettringite AFt, Friedel phase was a new hydration phase formed in the matrix. The formation of these hydration phases was responsible for huge reservoir of heavy metal stabilization by chemical fixing. Therefore, it could be postulated that MSW fly ash-CSA cement matrix was a potential new constituent of S/S matrix for high concentration of heavy metals such as Zn and Pb ions.  相似文献   

6.
The influence of CO2 content and SO2 presence on the leaching toxicity of heavy metals in municipal solid waste incinerator (MSWI) fly ash was studied by examining the carbonation reaction of MSWI fly ash with different combinations of simulated incineration flue gases. Compared with raw ash, the leaching solution pH of carbonated ash decreased by almost 1 unit and the leaching concentrations of heavy metals were generally lower, with that of Pb decreasing from 19.45 mg/L (raw ash) to 4.08 mg/L (1# carbonated ash). The presence of SO2 in the incineration flue gas increased the leaching concentrations of heavy metals from the fly ash to different extents after the carbonation stabilization reaction. The pH of the leaching solution was the main factor influencing the leaching concentrations of heavy metals. The increase in buffer capacity with the pH of carbonated ash caused an increase in heavy metal stability after the carbonation reaction. Accelerated carbonation stabilization of MSWI fly ash could reduce its long-term leaching concentrations (toxicity) of Cu, Pb, Se, and Zn. The leaching concentrations of heavy metals from carbonated ash also likely had better long-term stability than those from raw ash. The presence of SO2 in the incineration flue gas increased the proportion of exchangeable state species of heavy metals; slightly increased the long-term leaching toxicity of Cu, Pb, Se, and Zn; and reduced the long-term stability of these metals in the fly ash after the carbonation reaction.  相似文献   

7.
The disposal of fly ash generated during municipal solid waste incineration (MSWI) may pose a significant risk to the environment due to the possible leaching of hazardous pollutants, such as toxic metals. Sintering technology attracted more attention than the vitrification process because of its low energy needed. Generally, a preliminary washing treatment of raw fly ash with water was necessary for this sintering technology. This study investigated the composition and morphology of raw fly ash (RFA) and washed fly ash (WFA) at different sintering temperatures, and examined the newly formed minerals during sintering. Toxicity characteristic leaching procedure (TCLP) tests were carried out to investigate the effect of the washing treatment and sintering process on the leaching performance of heavy metals in fly ash. Results showed that, with an increase of sintering temperature more complex aluminosilicates were formed; the incorporation of Mg, Fe and Pb into the aluminosilicates occurred during the sintering process at higher temperatures (800 and 900 degrees C). The washing treatment reduced the leachable concentration of Cd, Pb and Ni, but increased that of Cr. A CaCrO(4) compound was considered as a potential soluble species.  相似文献   

8.
Municipal solid waste incinerator (MSWI) fly ash was frequently classified as hazardous materials as the metals' concentration of toxicity characteristic leaching procedure (TCLP) exceeded regulations. Many studies have focused on reducing the concentration of TCLP using thermal treatment and increasing the application of thermally treated slag. However, the metal patterns in MSWI fly ash with or without thermal treatment have seldom been addressed. The main objective of this study was evaluation of the distribution patterns of Pb, Cu and Cd from MSWI fly ash during thermal treatment by sequential extraction procedure. The experimental parameters included the form of pretreatment, the proportion of bottom ash (bottom ash/fly ash, B/F=0, 0.1 and 1) and the retention time. The results indicated that (1) In comparison to raw fly ash, the distribution patterns of Pb, Cu and Cd become stable in thermally treated slag. (2) Washing pretreatment caused the Pb pattern to become stable, while the influence on Cu and Cd were not significant. (3) The distribution patterns of Pb, Cu, and Cd became more stable as the retention time increased. (4) Adding bottom ash could make the distribution patterns of Pb and Cd more stable.  相似文献   

9.
The reuse of cement-solidified Municipal Solid Waste Incinerator (MSWI) fly ash (solidified/stabilised (S/S) product) as an artificial aggregate in Portland cement mortars was investigated. The S/S product consisted of a mixture of 48 wt.% washed MSWI fly ash, 20 wt.% Portland cement and 32 wt.% water, aged for 365 days at 20 degrees C and 100% RH. Cement mortars (water/cement weight ratio=0.62) were made with Portland cement, S/S product and natural sand at three replacement levels of sand with S/S product (0%, 10% and 50% by mass). After 28 days of curing at 20 degrees C and 100% RH, the mortar specimens were characterised for their physico-mechanical (porosity, compressive strength) and leaching behaviour. No retardation in strength development, relatively high compressive strengths (up to 36 N/mm2) and low leaching rates of heavy metals (Cr, Cu, Pb and Zn) were always recorded. The leaching data from sequential leach tests on monolithic specimens were successfully elaborated with a pseudo-diffusional model including a chemical retardation factor related to the partial dissolution of contaminant.  相似文献   

10.
Cement as agent for immobilising Pb from air pollution control residues is compared with the use of different silica-containing materials. The DIN 38414-S4 leaching test was used to control Pb leachability and to compare obtained Pb leachate concentrations with the landfill limit of 2 mg/l for Pb. Firstly, one scrubber residues was treated with cement and micro-silica. With cement, the Pb leachability could be reduced with a factor ranging from 3 to 50 depending on the type and amount of cement used and depending on the curing time. The landfill limit of 2 mg/l was, however, never attained. From all tested silica-containing additives, aerosil could reduce the initial Pb leaching (101.3mg/l) to below the detection limit at a dosage of 0.13 g aerosil/g residue. Second best and an economically preferable silica-containing additive was micro-silica: a reduction from 101.3 to 0.7 mg/l was observed at a dosage of 0.4 g micro-silica/g residue. The formation of Ca-silicates was found to be responsible for the decreased Pb leachability. To generalise the findings, the Pb leachability of five cement-treated and five micro-silica-treated air pollution control residues were compared. For three scrubber residues, 2-20 times lower Pb leachate concentrations were measured for micro-silica-treated samples (cured for 5 weeks) than cement-treated samples. For a fly ash and a boiler ash the difference was, respectively, 48 and 17 times. pH-dependent leaching tests showed that at pH=2.5, Pb leaching is 250 times lower for the micro-silica-treated residue than for the cement-treated residue and almost seven times lower at pH 12.4.  相似文献   

11.
Bottom and fly ash samples (BASH and FASH) from the APOTEFROTIRAS S.A. medical waste incinerator (Athens, Greece) were investigated. Powder-XRD data and geochemical diagrams showed BASH to be an amorphous material, analogous to basaltic glass, and FASH consisting of crystalline compounds (mainly CaClOH). Bulk analyses by ICP-MS and point analyses by SEM-EDS indicated a high content of heavy metals, such as Fe, Cu and Cr, in both samples. However, BASH was highly enriched in Ni while FASH was additionally enriched in Zn and Pb. Gamma-ray measurements showed that the radioactivity of both ash samples, due to natural and artificial radionuclides ((137)Cs, (57)Co), was within the permissible levels recommended by IAEA. According to EN-type leaching tests, BASH was practically inert with regard to the mobility of the hazardous elements in aqueous media. FASH, however, showed a relatively high EN (and TCLP) leachability with regard to Pb and Zn. Finally, the stabilisation method, suggested for the treatment of FASH, included compression of the powder into briquettes using an appropriate machine and embedding the briquettes into pozzolanic cement blocks. After this treatment, TCLP and EN-type tests showed minimal release of Pb and Zn, thereby demonstrating a reliable management of ash waste.  相似文献   

12.
This study presents the sintering of municipal solid waste incineration (MSWI) fly ash assisted by microwave energy. The composition of fly ash was investigated by chemical sequential extraction and modified microwave digestion method. Effects of process time, container materials, aging time and salt contents were also discussed. The major elements of fly ash are Ca, Cl, Na, Si, K, Al, Mg, and Zn, and the metal species, Zn, Cr, Pb, Ca, and Cu, are mainly in the oxide phase. Under microwave processing, the fly ash was sintered into a glass-ceramics and the leaching concentrations of heavy metals were restrained. The stabilization efficiency increased with an increase in processing time in most of the cases. Better stabilization efficiency of fly ash was discovered by using the SiO(2) or Al(2)O(3) container than by using the graphite plate/SiC plate. The presence of salt in the fly ash could enhance the sintering and stabilization of fly ash. During the aging time of 0-30 days, negligible Pb in the sintered fly ash was leached out, and the leaching concentration was lower than the criterion.  相似文献   

13.
Disposal of MSWI fly ash through a combined washing-immobilisation process   总被引:15,自引:0,他引:15  
The objective of this work was to investigate the feasibility of a combined washing-immobilisation process as a means of optimising the disposal of fly ash resulting from municipal solid waste incineration (MSWI) in cementitious matrices. Two different types of Italian MSWI fly ash and an ordinary Portland cement (ASTM Type I) were used. Washing pre-treatment of fly ash with water always produces a wastewater that can be successfully treated by reducing the pH to values of 6.5-7.5. This treatment is capable of removing the detected contaminants (Al, Cd, Pb, Zn) through two different mechanisms: precipitation of aluminium hydroxide and adsorption of cadmium, lead and zinc ions onto floc particles of Al(OH)(3). Setting and leaching tests on cementitious mixes prove that the hazardous sludge produced from wastewater treatment can be completely mixed with washed fly ash and this mixture can be incorporated into cementitious matrices to a great extent (75 wt.% of total solid) without the risks of an unacceptable delay of cement setting and an excessive heavy metals leachability from solidified products. The better performance of the combined washing-immobilisation process as compared to the immobilisation process of unwashed fly ash may be ascribed primarily to the ability of the washing step in promoting the formation of hydrate phases that incorporate and/or convert heavy metal compounds into less reactive forms and, secondarily, to its ability of removing significant amounts of alkali chlorides and sulphates from fly ash. As a result, MSWI fly ash is transformed into a material that adversely affects cement hydration to a much lower extent than unwashed fly ash.  相似文献   

14.
This study analyzed and compared the characteristics of bottom and fly ashes from three municipal solid waste incinerators (MSWIs) in Taiwan. Different incineration furnaces were investigated, including: (1) fluidized bed, (2) mass-burning, and (3) mass-burning linked rotary kiln. The particle size distribution, morphology, mineralogical and chemical composition, and leaching behavior of heavy metals of ash samples were evaluated. The results revealed that three types of incineration processes have different characteristic for ashes due to transportation and mixing system inside furnace. Particle size distribution indicated that 28.5% of MSWI-B bottom ash has lower than 180 microm and 61.2% of MSWI-A fly ash has larger than the 250 microm. The leaching concentration of Pb exceeded the regulatory level set by the Taiwan EPA in fly ashes from MSWI-B and MSWI-C, and thus must be considered hazardous wastes. Specifically, the leaching concentration of heavy metals of fly ashes from MSWI-A (fluidized bed incinerator) was lower than that of the others, and was corresponded to the regulatory levels. Therefore, a fluidized bed incineration process appears a potential of handling heavy metals for ashes. The result was also provided the valuable information for incinerator design and operation.  相似文献   

15.
As of 2004, nearly two hundred thousand tons of fly ash monoliths are created each year in Taiwan to confine heavy metals for reducing the leaching quantity by precipitation. However, due to abnormal monolith fracture, poorly liner quality or exceeding usage over designed landfill capacity, serious groundwater pollution of the landfills has been reported. This research focuses on Pb and Cr leaching from monolithic landfill to assess the risk of groundwater pollution in the vicinity. The methodology combines water budget simulations using HELP model with fate and risk simulations using MMSOILS model for 5 kinds of landfill structures and 2 types of leaching models, and calculates the risk distribution over 400 grids in the down gradient direction of groundwater.The results demonstrated that the worst liner quality will cause the largest risk and the most significant exposure pathway is groundwater intake, which accounted for 98% of the total risk. Comparing Pb and Cr concentrations in the groundwater with the drinking water standards, only 14.25% of the total grids are found to be under 0.05 mg/L of Pb, and over 96.5% of the total grids are in the safety range of Cr. It indicates that Pb leaching from fly ash monolithic landfills may cause serious health risks.Without consideration of the parameters uncertainty, the cancer and noncancer risk of Pb with the sanitary landfill method was 4.23E−07 and 0.63, respectively, both under acceptable levels. However, by considering the parameters uncertainty, the non-carcinogenic risk of Pb became 1.43, exceeding the acceptable level. Only under the sealed landfill method was the hazard quotient below 1. It is important to use at least the sealed landfill for fly ash monoliths containing lead to effectively reduce health risks.  相似文献   

16.
Phosphogypsum (PG, CaSO(4).H(2)O), a solid byproduct of phosphoric acid manufacturing, contains low levels of radium ((266)Ra), resulting in stackpiling as the only currently allowable disposal/storage method. PG can be stabilized with class C fly ash and lime for potential use in marine environments. An augmented simplex centroid design with pseudo-components was used to select 10 PG:class C fly ash:lime compositions. The 43cm(3) blocks were fabricated and subjected to a field submergence test and 28 days saltwater dynamic leaching study. The dynamic leaching study yielded effective calcium diffusion coefficients (D(e)) ranging from 1.15 x 10(-13) to 3.14 x 10(-13)m(2)s(-1) and effective diffusion depths (X(c)) ranging from 14.7 to 4.3mm for 30 years life. The control composites exhibited diametrical expansions ranging from 2.3 to 17.1%, providing evidence of the extent of the rupture development due to ettringite formation. Scanning electron microscopy (SEM), microprobe analysis showed that the formation of a CaCO(3) on the composite surface could not protect the composites from saltwater intrusion because the ruptures developed throughout the composites were too great. When the PG:class C fly ash:lime composites were submerged, saltwater was able to intrude throughout the entire composite and dissolve the PG. The dissolution of the PG increased the concentration of sulfate ions that could react with calcium aluminum oxides in class C fly ash forming additional ettringite that accelerated rupture development. Effective diffusion coefficients and effective diffusion depths alone are not necessarily good indicators of the long-term survivability of PG:class C fly ash:lime composites. Development of the ruptures in the composites must be considered when the composites are used for aquatic applications.  相似文献   

17.
The stabilization/solidification (S/S) of a municipal solid waste incineration (MSWI) fly ash containing hazardous metals such as Pb, Cd, Cr, Zn or Ba by means of geopolymerization technology is described in this paper. Different reagents such as sodium hydroxide, potassium hydroxide, sodium silicate, potassium silicate, kaolin, metakaolin and ground blast furnace slag have been used. Mixtures of MSWI waste with these kinds of geopolymeric materials and class F coal fly ash used as silica and alumina source have been processed to study the potential of geopolymers as waste immobilizing agents. To this end, the effects of curing conditions and composition have been tested. S/S solids are submitted to compressive strength and leaching tests to assess the results obtained and to evaluate the efficiency of the treatment. Compressive strength values in the range 1-9 MPa were easily obtained at 7 and 28 days. Concentrations of the metals leached from S/S products were strongly pH dependent, showing that the leachate pH was the most important variable for the immobilization of metals. Comparison of fly ash-based geopolymer systems with classical Portland cement stabilization methods has also been accomplished.  相似文献   

18.
A sequential extraction method has been applied for the determination of binding forms of trace elements in the municipal solid waste incineration (MSWI) fly ash and evaluating their leaching behavior in view of their potential environmental impact. The elemental determinations in the different leachates are performed by ICP-AES and ICP-MS, respectively. The morphology and mineralogical phases after extraction step were performed by scanning electron microscopy (SEM). Total of 20 elements in the samples are investigated. A reference material of city waste incineration fly ash (BCR No. 176) is also tested to examine the applicability as well as accuracy of the proposed method. The sum of most elements present in the individual fractions shows a good agreement with the total elemental concentrations. The extraction efficiencies are generally higher than 80% except for that of Cr and V. The extractable data of most elements give information about the binding forms of various elements in both incineration fly ashes. It was found that the elements such as Ca, K, Na, Pb, Zn, Cd, Cu and Sr have exhibited a remarkable mobility in fly ash. More than half of them would be dissolved or exchanged under a mild leaching condition. The toxic elements such as Pb, Cd, Zn and Cu have a great potential to be released into the environment under normal conditions.  相似文献   

19.
Chromium behavior during thermal treatment of MSW fly ash.   总被引:14,自引:0,他引:14  
Energy-from-waste incineration has been promoted as an environmentally responsible method for handling non-recyclable waste from households. Despite the benefits of energy production, elimination of organic residues and reduction of volume of waste to be landfilled, there is concern about fly ash disposal. Fly ash from an incinerator contains toxic species such as Pb, Zn, Cd and Cr which may leach into soil and ground water if landfilled.Thermal treatment of the fly ash from municipal solid waste has been tested and proposed as a treatment option for removal of metal species such as Pb, Cd and Zn, via thermal re-volatilization. However, Cr is an element that remains in the residue of the heat treated fly ash and appears to become more soluble. This Cr solubilization is of concern if it exceeds the regulatory limit for hazardous waste. Hence, this unexpected behavior of Cr was investigated. The initial work involved microscopic characterization of Cr in untreated and thermally-treated MSW fly ash. This was followed by determining leaching characteristics using standard protocol leaching tests and characterization leaching methods (sequential extraction). Finally, a mechanism explaining the increased solubilization was proposed and tested by reactions of synthetic chemicals.  相似文献   

20.
In this paper, the stabilization of electric arc furnace (EAF) dust containing hazardous metals such as Pb, Cd, Cr or Zn is described. The treatment involves a waste solidification/stabilization (S/S) process, using coal fly ash as the fundamental raw material and main binder. The article also contains a brief review of the most important recent publications related to the use of fly ash as S/S agents.The efficacy of the process has been evaluated mainly through leaching tests on the solidified products and compliance with some imposed leachate limits. The concentration of metals leaching from the S/S products was strongly leachate pH dependent; thus, the final pH of the leachate is the most important variable in reaching the limits and, therefore, in meeting the stabilization goals.In this study, the dependence relationship between the leachate pH and the concentrations of metals in the leachate are analyzed; in some cases, this allows us to estimate the speciation of contaminants in the S/S solids and to understand the mechanism responsible for reduced leachability of heavy metals from solidified wastes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号