首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
初始聚类中心优化的k-means算法   总被引:37,自引:0,他引:37       下载免费PDF全文
传统的k-means算法对初始聚类中心敏感,聚类结果随不同的初始输入而波动。为消除这种敏感性,提出一种优化初始聚类中心的方法,此方法计算每个数据对象所在区域的密度,选择相互距离最远的k个处于高密度区域的点作为初始聚类中心。实验表明改进后的k-means算法能产生质量较高的聚类结果,并且消除了对初始输入的敏感性。  相似文献   

2.
对k-means初始聚类中心的优化   总被引:1,自引:0,他引:1  
针对传统k-means算法对初始聚类中心敏感的问题,提出了基于数据样本分布选取初始聚类中心的改进k-means算法。该算法利用贪心思想构建K个数据集合,集合的大小与数据的实际分布密切相关,集合中的数据彼此间相互靠近。取集合中数据的平均值作为初始聚类中心,由此得到的初始聚类中心非常接近迭代聚类算法期待的聚类中心。理论分析和实验结果表明,改进算法能改善其聚类性能,并能得到稳定的聚类结果,取得较高的分类准确率。  相似文献   

3.
传统k-means算法由于初始聚类中心的选择是随机的,因此会使聚类结果不稳定。针对这个问题,提出一种基于离散量改进k-means初始聚类中心选择的算法。算法首先将所有对象作为一个大类,然后不断从对象数目最多的聚类中选择离散量最大与最小的两个对象作为初始聚类中心,再根据最近距离将这个大聚类中的其他对象划分到与之最近的初始聚类中,直到聚类个数等于指定的k值。最后将这k个聚类作为初始聚类应用到k-means算法中。将提出的算法与传统k-means算法、最大最小距离聚类算法应用到多个数据集进行实验。实验结果表明,改进后的k-means算法选取的初始聚类中心唯一,聚类过程的迭代次数也减少了,聚类结果稳定且准确率较高。  相似文献   

4.
传统的K-means算法随机选取初始聚类中心,聚类结果不稳定,容易陷入局部最优解。针对聚类中心的敏感性,提出一种优化初始聚类中心的K-means算法。此算法利用数据集样本的分布特征计算样本点的密度并进行分类,在高密度区域中选择K个密度最大且相互距离超过某特定阈值的点作为初始聚类中心,并对低密度区域的噪声点单独处理。实验证明,优化后的算法能取得更好的聚类效果,且稳定性增强。  相似文献   

5.
一种新的k-means聚类中心选取算法   总被引:1,自引:0,他引:1       下载免费PDF全文
在2010年提出已有的k-means聚类中心选取算法的基础上进行改进。通过计算样本间的距离求出每个样本的密度参数,选取最大密度参数值所对应的样本作为初始聚类中心。当最大密度参数值不惟一时,提出合理选取最大密度参数值的解决方案,依次求出k个初始聚类中心点,由此提出了一种新的k-means聚类中心选取算法。实验证明,提出的算法与对比算法相比具有更高的准确率。  相似文献   

6.
K-means算法的聚类效果与初始聚类中心的选择以及数据中的孤立点有很大关联,具有很强的不确定性.针对这个缺点,提出了一种优化初始聚类中心选择的K-means算法.该算法考虑数据集的分布情况,将样本点分为孤立点、低密度点和核心点,之后剔除孤立点与低密度点,在核心点中选取初始聚类中心,孤立点不参与聚类过程中各类样本均值的...  相似文献   

7.
传统k-means算法随机选取初始聚类中心使聚类结果不稳定,诸多优化算法的时间复杂度较高,为了提高聚类稳定性并降低时间复杂度,提出了基于个体轮廓系数自适应地选取优秀样本以确定初始聚类中心的改进k-means算法.该算法多次调用传统k-means算法聚类,根据k个类中心的个体轮廓系数以及各样本与类中心的距离,自适应地选取优秀样本,求其均值作为初始聚类中心.在多个UCI数据集上的实验表明,该算法聚类时间短,具有较高的轮廓系数和准确率.  相似文献   

8.
针对快速K-medoids聚类算法和方差优化初始中心的K-medoids聚类算法存在需要人为给定类簇数,初始聚类中心可能位于同一类簇,或无法完全确定数据集初始类簇中心等缺陷,受密度峰值聚类算法启发,提出了两种自适应确定类簇数的K-medoids算法。算法采用样本x i的t最近邻距离之和倒数度量其局部密度ρi,并定义样本x i的新距离δi,构造样本距离相对于样本密度的决策图。局部密度较高且相距较远的样本位于决策图的右上角区域,且远离数据集的大部分样本。选择这些样本作为初始聚类中心,使得初始聚类中心位于不同类簇,并自动得到数据集类簇数。为进一步优化聚类结果,提出采用类内距离与类间距离之比作为聚类准则函数。在UCI数据集和人工模拟数据集上进行了实验测试,并对初始聚类中心、迭代次数、聚类时间、Rand指数、Jaccard系数、Adjusted Rand index和聚类准确率等经典聚类有效性评价指标进行了比较,结果表明提出的K-medoids算法能有效识别数据集的真实类簇数和合理初始类簇中心,减少聚类迭代次数,缩短聚类时间,提高聚类准确率,并对噪音数据具有很好的鲁棒性。  相似文献   

9.
最小化误差平方和k-means初始聚类中心优化方法   总被引:1,自引:0,他引:1       下载免费PDF全文
传统的k-均值算法对初始聚类中心和孤立点敏感,文中以最大程度地减少误差平方和为基本思想,提出一种最大化减少当前误差平方和的k-means初始聚类中心优化方法。在初始聚类中心选择阶段,每次增加聚类中心时,计算所有数据点作为当前聚类中心能够减少的误差平方和,选择能够最大化减少误差平方和的数据点作为聚类初始中心。利用真实数据集,同其他算法进行对比,实验结果表明该方法在选择初始聚类中心方面能够有效地减少聚类的迭代次数,提高聚类质量。同时人工模拟数据表明该方法对孤立点相对不敏感。  相似文献   

10.
基于初始聚类中心优化的K-均值算法   总被引:2,自引:0,他引:2       下载免费PDF全文
针对传统的K-均值算法对初始聚类中心的选取和孤立点敏感的问题,本文提出了一种基于点密度的初始聚类中心选取方法。利用该方法选出初始聚类中心,再应用K-均值算法进行聚类,同时对孤立点进行特殊处理。实验表明,该方法能够产生高质量的聚类结果。  相似文献   

11.
孙秀娟  刘希玉 《计算机应用》2008,28(12):3244-3247
在K-means算法中,聚类数k是影响聚类质量的关键因素之一。目前,已经提出了许多确定最佳k值的聚类有效性方法,但这些方法都不能很好地处理两种数据集:类(簇)密度不同的数据集和类间距比较小的数据集(含有合并簇的数据集)。为此,提出了一种新的聚类有效性函数,该函数定义为数据特征轴总长度的平方与最小类间距的比值,最佳聚类数为这个比值达到最小时对应的k值。同时,为减小K-means算法对噪声和孤立点数据的敏感性,使用了基于加权的改进K-平均的方法计算类中心。实验证明,与其他算法相比,基于新聚类有效性函数的K-wmeans算法不仅降低了噪声和孤立点数据对聚类结果的影响,而且能有效地处理上面提到的两种数据集,明显提高了数据聚类质量。  相似文献   

12.
针对传统的K-均值算法聚类时所面临的维数灾难、初始聚类中心点难以确定的缺点,提出一种改进的K-均值算法,其核心思想是通过降维、基于密度及散布的初始中心点搜索等方法改进K-均值算法。实验结果证明改进后的算法无论在聚类精度还是在稳定性方面,都明显优于标准的K-均值算法。  相似文献   

13.
K-means算法的初始聚类中心的优化   总被引:10,自引:3,他引:7       下载免费PDF全文
传统的K-means算法对初始聚类中心敏感,聚类结果随不同的初始输入而波动,针对K-means算法存在的问题,提出了基于密度的改进的K-means算法,该算法采取聚类对象分布密度方法来确定初始聚类中心,选择相互距离最远的K个处于高密度区域的点作为初始聚类中心,理论分析与实验结果表明,改进的算法能取得更好的聚类结果。  相似文献   

14.
基于k-d树的k-means聚类方法   总被引:3,自引:2,他引:1  
在直接k-means算法的基础上提出了一种新的基于k-d树的聚类方法。通过把所有的对象组织在一棵k-d树中,可以高效地发现给定原型的所有最近邻对象。利用的主要思想是:在根结点,所有的聚类中心(或称为候选原型)都是所有对象的最近邻候选集合,对于根结点的子结点,通过简单几何约束来剪枝该候选集,这种方法可以被递归使用。使用基于k-d树的方法可以使直接k-means算法的总体性能提高一到两个数量级。  相似文献   

15.
针对DBSCAN算法存在的参数敏感性和不能区分相连的不同密度的簇等缺陷,提出了一种基于DBSCAN算法的改进算法。算法提出了累积平均密度的概念,用来作为簇合并的依据,弱化了密度阈值Minpts的作用;选取密度最大的对象作为初始聚类中心,按照密度由高到低的顺序进行聚类,具有一定的层次性,因此支持变密度数据集聚类。最后,用数据集对算法进行了聚类实验。实验结果表明,改进算法具有一定的参数鲁棒性,对于相连的不同密度的簇,能够达到理想的聚类效果。  相似文献   

16.
一种改进的k-means初始聚类中心选取算法   总被引:3,自引:0,他引:3       下载免费PDF全文
在传统的k-means聚类算法中,聚类结果会随着初始聚类中心点的不同而波动,针对这个缺点,提出一种优化初始聚类中心的算法。该算法通过计算每个数据对象的密度参数,然后选取k个处于高密度分布的点作为初始聚类中心。实验表明,在聚类类别数给定的情况下,通过用标准的UCI数据库进行实验比较,发现采用改进后方法选取的初始类中心的k-means算法比随机选取初始聚类中心算法有相对较高的准确率和稳定性。  相似文献   

17.
针对传统K-means算法对初始聚类中心敏感的问题,提出了基于数据样本分布情况的动态选取初始聚类中心的改进K-means算法。该算法根据数据点的距离构造最小生成树,并对最小生成树进行剪枝得到K个初始数据集合,得到初始的聚类中心。由此得到的初始聚类中心非常地接近迭代聚类算法收敛的聚类中心。理论分析与实验表明,改进的K-means算法能改善算法的聚类性能,减少聚类的迭代次数,提高效率,并能得到稳定的聚类结果,取得较高的分类准确率。  相似文献   

18.
最大距离法选取初始簇中心的K-means文本聚类算法的研究   总被引:1,自引:0,他引:1  
由于初始簇中心的随机选择, K-means算法在聚类时容易出现聚类结果局部最优、聚类结果不稳定、总迭代次数较多等问题。为了解决K-means算法所存在的以上问题, 提出了最大距离法选取初始簇中心的K-means文本聚类算法。该算法基于这样的事实:距离最远的样本点最不可能分到同一个簇中。为使该算法能应用于文本聚类, 构造了一种将文本相似度转换为文本距离的方法, 同时也重新构造了迭代中的簇中心计算公式和测度函数。在实例验证中, 对分属于五个类别的1 500篇文本组成的文本集进行了文本聚类分析, 其结果表明, 与原始的K-means聚类算法以及其他的两种改进的K-means聚类算法相比, 新提出的文本聚类算法在降低了聚类总耗时的同时, F度量值也有了明显提高。  相似文献   

19.
基于初始中心优化的遗传K-means聚类新算法   总被引:2,自引:2,他引:0  
一个好的K-means聚类算法至少要满足两个要求:(1)能反映聚类的有效性,即所分类别数要与实际问题相符;(2)具有处理噪声数据的能力。传统的K-means算法是一种局部搜索算法,存在着对初始化敏感和容易陷入局部极值的缺点。针对此缺点,提出了一种优化初始中心的K-means算法,该算法选择相距最远的处于高密度区域的k个数据对象作为初始聚类中心。实验表明该算法不仅具有对初始数据的弱依赖性,而且具有收敛快,聚类质量高的特点。为体现聚类的有效性,获得更高精度的聚类结果,提出了将优化的K-means算法(PKM)和遗传算法相结合的混合算法(PGKM),该算法在提高紧凑度(类内距)和分离度(类间距)的同时自动搜索最佳聚类数k,对k个初始中心优化后再聚类,不断地循环迭代,得到满足终止条件的最优聚类。实验证明该算法具有更好的聚类质量和综合性能。  相似文献   

20.
基于密度的改进K均值算法及实现   总被引:3,自引:1,他引:3  
傅德胜  周辰 《计算机应用》2011,31(2):432-434
传统的K均值算法的初始聚类中心从数据集中随机产生,聚类结果很不稳定。提出一种基于密度算法优化初始聚类中心的改进K-means算法,该算法选择相互距离最远的k个处于高密度区域的点作为初始聚类中心。实验证明,改进的K-means算法能够消除对初始聚类中心的依赖,聚类结果有了较大的改进。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号