首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents a new sonar based purely reactive navigation technique for mobile platforms. The method relies on Case-Based Reasoning to adapt itself to any robot and environment through learning, both by observation and self experience. Thus, unlike in other reactive techniques, kinematics or dynamics do not need to be explicitly taken into account. Also, learning from different sources allows combination of their advantages into a safe and smooth path to the goal. The method has been succesfully implemented on a Pioneer robot wielding 8 Polaroid sonar sensors. Cristina Urdiales is a Lecturer at the Department of Tecnología Electrónica (DTE) of the University of Málaga (UMA). She received a MSc degree in Telecommunication Engineering at the Universidad Politécnica de Madrid (UPM) and her Ph.D. degree at University of Málaga (UMA). Her research is focused on robotics and computer vision. E.J. Pérez was born in Barcelona, Spain, in 1974. He received his title of Telecommunication Engineering from the University of Málaga, Spain, in 1999. During 1999 he worked in a research project under a grant by the Spanish CYCIT. From 2000 to the present day he has worked as Assistant Professor in the Department of Tecnología Electrónica of the University of Málaga. His research is focused on robotics and artificial vision. Javier Vázquez-Salceda is an Associate Researcher of the Artificial Intelligence Section of the Software Department (LSI), at the Technical University of Catalonia (UPC). Javier obtained an MSc degree in Computer Science at UPC. After his master studies he became research assistant in the KEMLg Group at UPC. In 2003 he presented his Ph.D. dissertation (with honours), which has been awarded with the 2003 ECCAI Artificial Intelligence Dissertation Award. The dissertation has been also recently published as a book by Birkhauser-Verlag. From 2003 to 2005 he was researcher in the Intelligent Systems Group at Utrecht University. Currently he is again member of the KEMLg Group at UPC. His research is focused on theoretical and applied issues of Normative Systems, software and physical agents' autonomy and social control, especially in distributed applications for complex domains such as eCommerce or Medicine. Miquel Sànchez-Marrè (Barcelona, 1964) received a Ph.D. in Computer Science in 1996 from the Technical University of Catalonia (UPC). He is Associate Professor in the Computer Software Department (LSI) of the UPC since 1990 (tenure 1996). He was the head of the Artificial Intelligence section of LSI (1997–2000). He is a pioneer member of International Environmental Modelling and Software Society (IEMSS) and a board member of IEMSS also, since 2000. He is a member of the Editorial Board of International Journal of Applied Intelligence, since October 2001. Since October 2004 he is Associate Editor of Environmental Modelling and Software journal. His main research topics are case-based reasoning, machine learning, knowledge acquisition and data mining, knowledge engineering, intelligent decision-support systems, and integrated AI architectures. He has an special interest on the application of AI techniques to Environmental Decision Support Systems. Francisco Sandoval was born in Spain in 1947. He received the title of Telecommunication Engineering and Ph.D. degree from the Technical University of Madrid, Spain, in 1972 and 1980, respectively. From 1972 to 1989 he was engaged in teaching and research in the fields of opto-electronics and integrated circuits in the Universidad Politécnica de Madrid (UPM) as an Assistant Professor and a Lecturer successively. In 1990 he joined the University of Málaga as Full Professor in the Department of Tecnología Electrónica. He is currently involved in autonomous systems and foveal vision, application of Artificial Neural Networks to Energy Management Systems, and in Broad Band and Multimedia Communication.  相似文献   

2.
A huge amount of data is daily collected from clinical microbiology laboratories. These data concern the resistance or susceptibility of bacteria to tested antibiotics. Almost all microbiology laboratories follow standard antibiotic testing guidelines which suggest antibiotic test execution methods and result interpretation and validation (among them, those annually published by NCCLS2,3). Guidelines basically specify, for each species, the antibiotics to be tested, how to interpret the results of tests and a list of exceptions regarding particular antibiotic test results. Even if these standards are quite assessed, they do not consider peculiar features of a given hospital laboratory, which possibly influence the antimicrobial test results, and the further validation process. In order to improve and better tailor the validation process, we have applied knowledge discovery techniques, and data mining in particular, to microbiological data with the purpose of discovering new validation rules, not yet included in NCCLS guidelines, but considered plausible and correct by interviewed experts. In particular, we applied the knowledge discovery process in order to find (association) rules relating to each other the susceptibility or resistance of a bacterium to different antibiotics. This approach is not antithetic, but complementary to that based on NCCLS rules: it proved very effective in validating some of them, and also in extending that compendium. In this respect, the new discovered knowledge has lead microbiologists to be aware of new correlations among some antimicrobial test results, which were previously unnoticed. Last but not least, the new discovered rules, taking into account the history of the considered laboratory, are better tailored to the hospital situation, and this is very important since some resistances to antibiotics are specific to particular, local hospital environments. Evelina Lamma, Ph.D.: She got her degree in Electrical Engineering at the University of Bologna in 1985, and her Ph.D. in Computer Science in 1990. Her research activity centers on logic programming languages, artificial intelligence and agent-based programming. She was co-organizers of the 3rd International Workshop on Extensions of Logic Programming ELP92, held in Bologna in February 1992, and of the 6th Italian Congress on Artificial Intelligence, held in Bologna in September 1999. She is a member of the Italian Association for Artificial Intelligence (AI*IA), associated with ECCAI. Currently, she is Full Professor at the University of Ferrara, where she teaches Artificial Intelligence and Fondations of Computer Science. Fabrizio Riguzzi, Ph.D.: He is Assistant Professor at the Department of Engineering of the University of Ferrara, Italy. He received his Laurea from the University of Bologna in 1999. He joined the Department of Engineering of the University of Ferrara in 1999. He has been a visiting researcher at the University of Cyprus and at the New University of Lisbon. His research interests include: data mining (and in particular methods for learning from multirelational data), machine learning, belief revision, genetic algorithms and software engineering. Sergio Storari: He got his degree in Electrical Engineering at the University of Ferrara in 1998. His research activity centers on artificial intelligence, knowledge-based systems, data mining and multi-agent systems. He is a member of the Italian Association for Artificial Intelligence (AI*IA), associated with ECCAI. Currently, he is attending the third year of Ph.D. course about “Study and application of Artificial Intelligence techniques for medical data analysis” at DEIS University of Bologna. Paola Mello, Ph.D.: She got her degree in Electrical Engineering at the University of Bologna in 1982, and her Ph.D. in Computer Science in 1988. Her research activity centers on knowledge representation, logic programming, artificial intelligence and knowledge-based systems. She was co-organizers of the 3rd International Workshop on Extensions of Logic Programming ELP92, held in Bologna in February 1992, and of the 6th Italian Congress on Artificial Intelligence, Held in Bologna in September 1999. She is a member of the Italian Association for Artificial Intelligence (AI*IA), associated with ECCAI. Currently, she is Full Professor at the University of Bologna, where she teaches Artificial Intelligence and Fondations of Computer Science. Anna Nanetti: She got a degree in biologics sciences at the University of Bologna in 1974. Currently, she is an Academic Recearcher in the Microbiology section of the Clinical, Specialist and Experimental Medicine Department of the Faculty of Medicine and Surgery, University of Bologna.  相似文献   

3.
4.
Inductive logic programming (ILP) is concerned with the induction of logic programs from examples and background knowledge. In ILP, the shift of attention from program synthesis to knowledge discovery resulted in advanced techniques that are practically applicable for discovering knowledge in relational databases. This paper gives a brief introduction to ILP, presents selected ILP techniques for relational knowledge discovery and reviews selected ILP applications. Nada Lavrač, Ph.D.: She is a senior research associate at the Department of Intelligent Systems, J. Stefan Institute, Ljubljana, Slovenia (since 1978) and a visiting professor at the Klagenfurt University, Austria (since 1987). Her main research interest is in machine learning, in particular inductive logic programming and intelligent data analysis in medicine. She received a BSc in Technical Mathematics and MSc in Computer Science from Ljubljana University, and a PhD in Technical Sciences from Maribor University, Slovenia. She is coauthor of KARDIO: A Study in Deep and Qualitative Knowledge for Expert Systems, The MIT Press 1989, and Inductive Logic Programming: Techniques and Applications, Ellis Horwood 1994, and coeditor of Intelligent Data Analysis in Medicine and Pharmacology, Kluwer 1997. She was the coordinator of the European Scientific Network in Inductive Logic Programming ILPNET (1993–1996) and program cochair of the 8th European Machine Learning Conference ECML’95, and 7th International Workshop on Inductive Logic Programming ILP’97. Sašo Džeroski, Ph.D.: He is a research associate at the Department of Intelligent Systems, J. Stefan Institute, Ljubljana, Slovenia (since 1989). He has held visiting researcher positions at the Turing Institute, Glasgow (UK), Katholieke Universiteit Leuven (Belgium), German National Research Center for Computer Science (GMD), Sankt Augustin (Germany) and the Foundation for Research and Technology-Hellas (FORTH), Heraklion (Greece). His research interest is in machine learning and knowledge discovery in databases, in particular inductive logic programming and its applications and knowledge discovery in environmental databases. He is co-author of Inductive Logic Programming: Techniques and Applications, Ellis Horwood 1994. He is the scientific coordinator of ILPnet2, The Network of Excellence in Inductive Logic Programming. He was program co-chair of the 7th International Workshop on Inductive Logic Programming ILP’97 and will be program co-chair of the 16th International Conference on Machine Learning ICML’99. Masayuki Numao, Ph.D.: He is an associate professor at the Department of Computer Science, Tokyo Institute of Technology. He received a bachelor of engineering in electrical and electronics engineering in 1982 and his Ph.D. in computer science in 1987 from Tokyo Institute of Technology. He was a visiting scholar at CSLI, Stanford University from 1989 to 1990. His research interests include Artificial Intelligence, Global Intelligence and Machine Learning. Numao is a member of Information Processing Society of Japan, Japanese Society for Artificial Intelligence, Japanese Cognitive Science Society, Japan Society for Software Science and Technology and AAAI.  相似文献   

5.
*1 Constraint Satisfaction Problems (CSPs)17) are an effective framework for modeling a variety of real life applications and many techniques have been proposed for solving them efficiently. CSPs are based on the assumption that all constrained data (values in variable domains) are available at the beginning of the computation. However, many non-toy problems derive their parameters from an external environment. Data retrieval can be a hard task, because data can come from a third-party system that has to convert information encoded with signals (derived from sensors) into symbolic information (exploitable by a CSP solver). Also, data can be provided by the user or have to be queried to a database. For this purpose, we introduce an extension of the widely used CSP model, called Interactive Constraint Satisfaction Problem (ICSP) model. The variable domain values can be acquired when needed during the resolution process by means of Interactive Constraints, which retrieve (possibly consistent) information. A general framework for constraint propagation algorithms is proposed which is parametric in the number of acquisitions performed at each step. Experimental results show the effectiveness of the proposed approach. Some applications which can benefit from the proposed solution are also discussed. This paper is an extended and revised version of the paper presented at IJCAI’99 (Stockholm, August 1999)4). Paola Mello, Ph.D.: She received her degree in Electronic Engineering from University of Bologna, Italy, in 1982 and her Ph.D. degree in Computer Science in 1989. Since 1994 she is full Professor. She is enrolled, at present, at the Faculty of Engineering of the University of Bologna where she teaches Artificial Intelligence. Her research activity focuses around: programming languages, with particular reference to logic languages and their extensions towards modular and object-oriented programming; artificial intelligence; knowledge representation; expert systems. Her research has covered implementation, application and theoretical aspects and is presented in several national and international publications. She took part to several national (Progetti Finalizzati e MURST) and international (UE) research projects in the context of computational logic. Michela Milano, Ph.D.: She is a Researcher in the Department of Electronics, Computer Science and Systems at the University of Bologna. From the same University she obtained her master degree in 1994 and her Ph.D. in 1998. In 1999 she had a post-doc position at the University of Ferrara. Her research focuses on Artificial Intelligence, Constraint Satisfaction and Constraint Programming. In particular, she worked on using and extending the constraint-based paradigm for solving real-life problems such as scheduling, routing, object recognition and planning. She has served on the program committees of several international conferences in the area of Constraint Satisfaction and Programming, and she has served as referee in several related international journals. Marco Gavanelli: He is currently a Ph.D. Student in the Department of Engineering at the University of Ferrara, Italy. He graduated in Computer Science Engineering in 1998 at the University of Bologna, Italy. His research interest include Artificial Intelligence, Constraint Logic Programming, Constraint Satisfaction and visual recognition. He is a member of ALP (the Association for Logic Programming) and AI*IA (the Italian Association for Artificial Intelligence). Evelina Lamma, Ph.D.: She got her degree in Electrical Engineering at the University of Bologna in 1985, and her Ph.D. in Computer Science in 1990. Her research activity centers on logic programming languages, Artificial Intelligence and software engineering. She was co-organizers of the 3rd International Workshop on Extensions of Logic Programming ELP92, held in Bologna in February 1992, and of the 6th Italian Congress on Artificial Intelligence, held in Bologna in September 1999. She is a member of the Executive Committee of the Italian Association for Artificial Intelligence (AI*IA). Currently, she is Full Professor at the University of Ferrara, where she teaches Artificial Intelligence and Fondations of Computer Science. Massimo Piccardi, Ph.D.: He graduated in electronic engineering at the University of Bologna, Italy, in 1991, where he received a Ph.D. in computer science and computer engineering in 1995. He currently an assistant professor of computer science with the Faculty of Engineering at the University of Ferrara, Italy, where he teaches courses on computer architecture and microprocessor systems. Massimo Piccardi participated in several research projects in the area of computer vision and pattern recognition. His research interests include architectures, algorithms and benchmarks for computer vision and pattern recognition. He is author of more than forty papers on international scientific journals and conference proceedings. Dr. Piccardi is a member of the IEEE, the IEEE Computer Society, and the International Association for Pattern Recognition — Italian Chapter. Rita Cucchiara, Ph.D.: She is an associate professor of computer science at the Faculty of Engineering at the University of Modena and Reggio Emilia, Italy, where she teaches courses on computer architecture and computer vision. She graduated in electronic engineering at the University of Bologna, Italy, in 1989 and she received a Ph.D. in electronic engineering and computer science from the same university in 1993. From 1993 to 1998 she been an assistant professor of computer science with the University of Ferrara, Italy. She participated in many research projects, including a SIMD parallel system for vision in the context of an Italian advanced research program in robotics, funded by CNR (the Italian National Research Council). Her research interests include architecture and algorithms for computer vision and multimedia systems. She is author of several papers on scientific journals and conference proceedings. She is member of the IEEE, the IEEE Computer Society, and the International Association for Pattern Recognition — Italian Chapter.  相似文献   

6.
On-demand broadcast is an attractive data dissemination method for mobile and wireless computing. In this paper, we propose a new online preemptive scheduling algorithm, called PRDS that incorporates urgency, data size and number of pending requests for real-time on-demand broadcast system. Furthermore, we use pyramid preemption to optimize performance and reduce overhead. A series of simulation experiments have been performed to evaluate the real-time performance of our algorithm as compared with other previously proposed methods. The experimental results show that our algorithm substantially outperforms other algorithms over a wide range of workloads and parameter settings. The work described in this paper was partially supported by grants from CityU (Project No. 7001841) and RGC CERG Grant No. HKBU 2174/03E. This paper is an extended version of the paper “A preemptive scheduling algorithm for wireless real-time on-demand data broadcast” that appeared in the 11th IEEE International Conference on Embedded and Real-Time Computing Systems and Applications. Victor C. S. Lee received his Ph.D. degree in Computer Science from the City University of Hong Kong in 1997. He is now an Assistant Professor in the Department of Computer Science of the City University of Hong Kong. Dr. Lee is a member of the ACM, the IEEE and the IEEE Computer Society. He is currently the Chairman of the IEEE, Hong Kong Section, Computer Chapter. His research interests include real-time data management, mobile computing, and transaction processing. Xiao Wu received the B.Eng. and M.S. degrees in computer science from Yunnan University, Kunming, China, in 1999 and 2002, respectively. He is currently a Ph.D. candidate in the Department of Computer Science at the City University of Hong Kong. He was with the Institute of Software, Chinese Academy of Sciences, Beijing, China, between January 2001 and July 2002. From 2003 to 2004, he was with the Department of Computer Science of the City University of Hong Kong, Hong Kong, as a Research Assistant. His research interests include multimedia information retrieval, video computing and mobile computing. Joseph Kee-Yin NG received a B.Sc. in Mathematics and Computer Science, a M.Sc. in Computer Science, and a Ph.D. in Computer Science from the University of Illinois at Urbana-Champaign in the years 1986, 1988, and 1993, respectively. Prof. Ng is currently a professor in the Department of Computer Science at Hong Kong Baptist University. His current research interests include Real-Time Networks, Multimedia Communications, Ubiquitous/Pervasive Computing, Mobile and Location- aware Computing, Performance Evaluation, Parallel and Distributed Computing. Prof. Ng is the Technical Program Chair for TENCON 2006, General Co-Chair for The 11th International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA 2005), Program Vice Chair for The 11th International Conference on Parallel and Distributed Systems (ICPADS 2005), Program Area-Chair for The 18th & 19th International Conference on Advanced Information Networking and Applications (AINA 2004 & AINA 2005), General Co-Chair for The International Computer Congress 1999 & 2001 (ICC’99 & ICC’01), Program Co-Chair for The Sixth International Conference on Real-Time Computing Systems and Applications (RTCSA’99) and General Co-Chair for The 1999 and 2001 International Computer Science Conference (ICSC’99 & ICSC’01). Prof. Ng is a member of the Editorial Board of Journal of Pervasive Computing and Communications, Journal of Ubiquitous Computing and Intelligence, Journal of Embedded Computing, and Journal of Microprocessors and Microsystems. He is the Associate Editor of Real-Time Systems Journal and Journal of Mobile Multimedia. He is also a guest editor of International Journal of Wireless and Mobile Computing for a special issue on Applications, Services, and Infrastructures for Wireless and Mobile Computing. Prof. Ng is currently the Region 10 Coordinator for the Chapter Activities Board of the IEEE Computer Society, and is the Coordinator of the IEEE Computer Society Distinguished Visitors Program (Asia/Pacific). He is a senior member of the IEEE and has been a member of the IEEE Computer Society since 1991. Prof. Ng has been an Exco-member (1993–95), General Secretary (1995–1997), Vice-Chair (1997–1999), Chair (1999–2001) and the Past Chair of the IEEE, Hong Kong Section, Computer Chapter. Prof. Ng received the Certificate of Appreciation for Services and Contribution (2004) from IEEE Hong Kong Section, the Certificate of Appreciation for Leadership and Service (2000–2001) from IEEE Region 10 and the IEEE Meritorious Service Award from IEEE Computer Society at 2004. He is also a member of the IEEE Communication Society, ACM and the Founding Member for the Internet Society (ISOC)-Hong Kong Chapter.  相似文献   

7.
Innovating Web Page Classification Through Reducing Noise   总被引:5,自引:0,他引:5       下载免费PDF全文
This paper presents a new method that eliminates noise in Web page classification.It first describes the presentation of a Web page based on HTML tags.Then through a novel distance formula,it eliminates the noise in similarity measure.After carefully analyzing Web pages,we design an algorithm that can distinguish related hyperlinks from noisy ones,Web can utilize non-noisy hyperlinks to improve th performance of Web page classification (The AWN algorithm).For any page.we can classify it through the text and category of neighbor pages relted to the page.The experimental results show that our approach improved classification accuracy.  相似文献   

8.
A Horn definition is a set of Horn clauses with the same predicate in all head literals. In this paper, we consider learning non-recursive, first-order Horn definitions from entailment. We show that this class is exactly learnable from equivalence and membership queries. It follows then that this class is PAC learnable using examples and membership queries. Finally, we apply our results to learning control knowledge for efficient planning in the form of goal-decomposition rules. Chandra Reddy, Ph.D.: He is currently a doctoral student in the Department of Computer Science at Oregon State University. He is completing his Ph.D. on June 30, 1998. His dissertation is entitled “Learning Hierarchical Decomposition Rules for Planning: An Inductive Logic Programming Approach.” Earlier, he had an M. Tech in Artificial Intelligence and Robotics from University of Hyderabad, India, and an M.Sc.(tech) in Computer Science from Birla Institute of Technology and Science, India. His current research interests broadly fall under machine learning and planning/scheduling—more specifically, inductive logic programming, speedup learning, data mining, and hierarchical planning and optimization. Prasad Tadepalli, Ph.D.: He has an M.Tech in Computer Science from Indian Institute of Technology, Madras, India and a Ph.D. from Rutgers University, New Brunswick, USA. He joined Oregon State University, Corvallis, as an assistant professor in 1989. He is now an associate professor in the Department of Computer Science of Oregon State University. His main area of research is machine learning, including reinforcement learning, inductive logic programming, and computational learning theory, with applications to classification, planning, scheduling, manufacturing, and information retrieval.  相似文献   

9.
In this paper, we present a new method for fuzzy risk analysis based on the ranking of generalized trapezoidal fuzzy numbers. The proposed method considers the centroid points and the standard deviations of generalized trapezoidal fuzzy numbers for ranking generalized trapezoidal fuzzy numbers. We also use an example to compare the ranking results of the proposed method with the existing centroid-index ranking methods. The proposed ranking method can overcome the drawbacks of the existing centroid-index ranking methods. Based on the proposed ranking method, we also present an algorithm to deal with fuzzy risk analysis problems. The proposed fuzzy risk analysis algorithm can overcome the drawbacks of the one we presented in [7]. Shi-Jay Chen was born in 1972, in Taipei, Taiwan, Republic of China. He received the B.S. degree in information management from the Kaohsiung Polytechnic Institute, Kaohsiung, Taiwan, and the M.S. degree in information management from the Chaoyang University of Technology, Taichung, Taiwan, in 1997 and 1999, respectively. He received the Ph.D. degree at the Department of Computer Science and Information Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan, in October 2004. His research interests include fuzzy systems, multicriteria fuzzy decisionmaking, and artificial intelligence. Shyi-Ming Chen was born on January 16, 1960, in Taipei, Taiwan, Republic of China. He received the Ph.D. degree in Electrical Engineering from National Taiwan University, Taipei, Taiwan, in June 1991. From August 1987 to July 1989 and from August 1990 to July 1991, he was with the Department of Electronic Engineering, Fu-Jen University, Taipei, Taiwan. From August 1991 to July 1996, he was an Associate Professor in the Department of Computer and Information Science, National Chiao Tung University, Hsinchu, Taiwan. From August 1996 to July 1998, he was a Professor in the Department of Computer and Information Science, National Chiao Tung University, Hsinchu, Taiwan. From August 1998 to July 2001, he was a Professor in the Department of Electronic Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan. Since August 2001, he has been a Professor in the Department of Computer Science and Information Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan. He was a Visiting Scholar in the Department of Electrical Engineering and Computer Science, University of California, Berkeley, in 1999. He was a Visiting Scholar in the Institute of Information Science, Academia Sinica, Republic of China, in 2003. He has published more than 250 papers in referred journals, conference proceedings and book chapters. His research interests include fuzzy systems, information retrieval, knowledge-based systems, artificial intelligence, neural networks, data mining, and genetic algorithms. Dr. Chen has received several honors and awards, including the 1994 Outstanding Paper Award o f the Journal of Information and Education, the 1995 Outstanding Paper Award of the Computer Society of the Republic of China, the 1995 and 1996 Acer Dragon Thesis Awards for Outstanding M.S. Thesis Supervision, the 1995 Xerox Foundation Award for Outstanding M.S. Thesis Supervision, the 1996 Chinese Institute of Electrical Engineering Award for Outstanding M.S. Thesis Supervision, the 1997 National Science Council Award, Republic of China, for Outstanding Undergraduate Student's Project Supervision, the 1997 Outstanding Youth Electrical Engineer Award of the Chinese Institute of Electrical Engineering, Republic of China, the Best Paper Award of the 1999 National Computer Symposium, Republic of China, the 1999 Outstanding Paper Award of the Computer Society of the Republic of China, the 2001 Institute of Information and Computing Machinery Thesis Award for Outstanding M.S. Thesis Supervision, the 2001 Outstanding Talented Person Award, Republic of China, for the contributions in Information Technology, the 2002 Institute of information and Computing Machinery Thesis Award for Outstanding M.S. Thesis Supervision, the Outstanding Electrical Engineering Professor Award granted by the Chinese Institute of Electrical Engineering (CIEE), Republic of China, the 2002 Chinese Fuzzy Systems Association Best Thesis Award for Outstanding M.S. Thesis Supervision, the 2003 Outstanding Paper Award of the Technological and Vocational Education Society, Republic of China, the 2003 Acer Dragon Thesis Award for Outstanding Ph.D. Dissertation Supervision, the 2005 “Operations Research Society of Taiwan” Award for Outstanding M.S. Thesis Supervision, the 2005 Acer Dragon Thesis Award for Outstanding Ph.D. Dissertation Supervision, the 2005 Taiwan Fuzzy Systems Association Award for Outstanding Ph.D. Dissertation Supervision, and the 2006 “Operations Research Society of Taiwan” Award for Outstanding M.S. Thesis Supervision. Dr. Chen is currently the President of the Taiwanese Association for Artificial Intelligence (TAAI). He is a Senior Member of the IEEE, a member of the ACM, the International Fuzzy Systems Association (IFSA), and the Phi Tau Phi Scholastic Honor Society. He was an administrative committee member of the Chinese Fuzzy Systems Association (CFSA) from 1998 to 2004. He is an Associate Editor of the IEEE Transactions on Systems, Man, and Cybernetics - Part C, an Associate Editor of the IEEE Computational Intelligence Magazine, an Associate Editor of the Journal of Intelligent & Fuzzy Systems, an Editorial Board Member of the International Journal of Applied Intelligence, an Editor of the New Mathematics and Natural Computation Journal, an Associate Editor of the International Journal of Fuzzy Systems, an Editorial Board Member of the International Journal of Information and Communication Technology, an Editorial Board Member of the WSEAS Transactions on Systems, an Editor of the Journal of Advanced Computational Intelligence and Intelligent Informatics, an Associate Editor of the WSEAS Transactions on Computers, an Editorial Board Member of the International Journal of Computational Intelligence and Applications, an Editorial Board Member of the Advances in Fuzzy Sets and Systems Journal, an Editor of the International Journal of Soft Computing, an Editor of the Asian Journal of Information Technology, an Editorial Board Member of the International Journal of Intelligence Systems Technologies and Applications, an Editor of the Asian Journal of Information Management, an Associate Editor of the International Journal of Innovative Computing, Information and Control, and an Editorial Board Member of the International Journal of Computer Applications in Technology. He was an Editor of the Journal of the Chinese Grey System Association from 1998 to 2003. He is listed in International Who's Who of Professionals, Marquis Who's Who in the World, and Marquis Who's Who in Science and Engineering.  相似文献   

10.
The paper is about some families of rewriting P systems, where the application of evolution rules is extended from the classical sequential rewriting to the parallel one (as, for instance, in Lindenmayer systems). As a result, consistency problems for the communication of strings may arise. Three variants of parallel rewriting P systems (already present in the literature) are considered here, together with the strategies they use to face the communication problem, and some parallelism methods for string rewriting are defined. We give a survey of all known results about each variant and we state some relations among the three variants, thus establishing hierarchies of parallel rewriting P systems. Various open problems related to the subject are also presented. Danicla Besozzi: She is assistant professor at the University of Milano. She received her M.S. in Mathematics (2000) from the University of Como and Ph.D. in Computer Science (2004) from the University of Milano. Her research interests cover topics in Formal Language Theory, Molecular Computing, Systems Biology. She is member of EATCS (European Association for Theoretical Computer Science) and EMCC (European Molecular Computing Consortium). Giancarlo Mauri: He is full professor of Computer Science at the University of Milano-Bicocca. His research interests are mainly in the area of theoretical computer science, and include: formal languages and automata, computational complexity, computational learning theory, soft computing techniques, cellular automata, bioinformatics and molecular computing. On these subjects, he published more than 150 scientific papers in international journals, contributed volumes and conference proceedings. Claudio Zandron: He received Ph.D. in Computer Science at the University of Milan, Italy, in 2001. Since 2002 he is assistant professor at the University of Milano-Bicocca, Italy. He is member of the EATCS (European Association for Theoretical Computer Science) and of EMCC (European Molecular Computing Consortium). His research interests are Molecular Computing (DNA and Membrane Computing) and Formal Languages.  相似文献   

11.
The power of communication: P systems with symport/antiport   总被引:4,自引:0,他引:4  
In the attempt to have a framework where the computation is done by communication only, we consider the biological phenomenon of trans-membrane transport of couples of chemicals (one say symport when two chemicals pass together through a membrane, in the same direction, and antiport when two chemicals pass simultaneously through a membrane, in opposite directions). Surprisingly enough, membrane systems without changing (evolving) the used objects and with the communication based on rules of this type are computationally complete, and this result is achieved even for pairs of communicated objects (as encountered in biology). Five membranes are used; the number of membranes is reduced to two if more than two chemicals may collaborate when passing through membranes. Andrei Paun: He graduated the Faculty of Mathematics of Bucharest University in 1998, received his M.Sc. degree from The University of Western Ontario in 1999, and since then he is a PhD student in the Computer Science Department of University of Western Ontario, London, Canada (under the guidance of prof. Sheng Yu). The topic of his thesis is Molecular Computing (especially, DNA and Membrane Computing), but his research interests also include neural networks, implementing automata, combinatorics on words. Gheorghe Paun: (the proud father of two sons, including the first author of this paper) He is a member of the Romanian Academy, working as a senior researcher in the Institute of Mathematics of the Romanian Academy, Bucharest, and as a Ramon y Cajal researcher in Rovira i Virgili University of Tarragona, Spain. He is one of the most active authors in (the theory of) DNA Computing, (co)author of many papers in this area, (co)author and (co)editor of several books. In 1998 he has initiated the area of Membrane Computing. Other research interests: regulated rewriting, grammar systems, contextual grammars, combinatorics on words, computational linguistics.  相似文献   

12.
We present a system for performing belief revision in a multi-agent environment. The system is called GBR (Genetic Belief Revisor) and it is based on a genetic algorithm. In this setting, different individuals are exposed to different experiences. This may happen because the world surrounding an agent changes over time or because we allow agents exploring different parts of the world. The algorithm permits the exchange of chromosomes from different agents and combines two different evolution strategies, one based on Darwin’s and the other on Lamarck’s evolutionary theory. The algorithm therefore includes also a Lamarckian operator that changes the memes of an agent in order to improve their fitness. The operator is implemented by means of a belief revision procedure that, by tracing logical derivations, identifies the memes leading to contradiction. Moreover, the algorithm comprises a special crossover mechanism for memes in which a meme can be acquired from another agent only if the other agent has “accessed” the meme, i.e. if an application of the Lamarckian operator has read or modified the meme. Experiments have been performed on the η-queen problem and on a problem of digital circuit diagnosis. In the case of the η-queen problem, the addition of the Lamarckian operator in the single agent case improves the fitness of the best solution. In both cases the experiments show that the distribution of constraints, even if it may lead to a reduction of the fitness of the best solution, does not produce a significant reduction. Evelina Lamma, Ph.D.: She is Full Professor at the University of Ferrara. She got her degree in Electrical Engineering at the University of Bologna in 1985, and her Ph.D. in Computer Science in 1990. Her research activity centers on extensions of logic programming languages and artificial intelligence. She was coorganizers of the 3rd International Workshop on Extensions of Logic Programming ELP92, held in Bologna in February 1992, and of the 6th Italian Congress on Artificial Intelligence, held in Bologna in September 1999. Currently, she teaches Artificial Intelligence and Fondations of Computer Science. Fabrizio Riguzzi, Ph.D.: He is Assistant Professor at the Department of Engineering of the University of Ferrara, Italy. He received his Laurea from the University of Bologna in 1995 and his Ph.D. from the University of Bologna in 1999. He joined the Department of Engineering of the University of Ferrara in 1999. He has been a visiting researcher at the University of Cyprus and at the New University of Lisbon. His research interests include: data mining (and in particular methods for learning from multirelational data), machine learning, belief revision, genetic algorithms and software engineering. Luís Moniz Pereira, Ph.D.: He is Full Professor of Computer Science at Departamento de Informática, Universidade Nova de Lisboa, Portugal. He received his Ph.D. in Artificial Intelligence from Brunel University in 1974. He is the director of the Artificial Intelligence Centre (CENTRIA) at Universidade Nova de Lisboa. He has been elected Fellow of the European Coordinating Committee for Artificial Intelligence in 2001. He has been a visiting Professor at the U. California at Riverside, USA, the State U. NY at Stony Brook, USA and the U. Bologna, Italy. His research interests include: knowledge representation, reasoning, learning, rational agents and logic programming.  相似文献   

13.
In this paper, we introduce a simple and original algorithm to compute a three-dimensional simplicial complex topologically equivalent to a 3D digital object V, according to the 26-adjacency. The use of this adjacency generates issues like auto-intersecting triangles that unnecessarily increase the dimensionality of the associated simplicial complex. To avoid these problems, we present an approach based on a modified Delaunay tetrahedralization of the digital object, that preserves its topological characteristics. Considering the resulting complex as an input in algebraic-topological format (fixing a ground ring for the coefficients), we develop propositions regardless of the adjacency considered. These potential applications are related to topological analysis like thinning, homology computation, topological characterization and control. Moreover, our technique is susceptible to be extended to higher dimensions. The article is published in the original. Jean-Luc Mari received his PhD degree in 2002. He has been an Associate Professor since 2003 in the Department of Computer Science at the Faculté des Sciences de Luminy (University of Marseilles). He is also a member of the Information and System Science Laboratory (LSIS), in the team “Image and Models” (Computer Graphics group). His research interests include geometrical modeling, model representation, implicit and subdivision surfaces, meshes, multiresolution, skeleton based objects and reconstruction. Pedro Real received his PhD degree in 1993. He has been an Associate Professor since 1995 in the Department of Applied Mathematics I at Higher Technical School of Computer Engineering (University of Seville, Spain). He is the main responsible of the andalusian research group “Computational Topology and Applied Mathematics.” His research interests include computational algebraic topology, topological analysis of digital images, algebraic pattern recognition and computational algebra.  相似文献   

14.
In this paper, we propose a new topology called theDual Torus Network (DTN) which is constructed by adding interleaved edges to a torus. The DTN has many advantages over meshes and tori such as better extendibility, smaller diameter, higher bisection width, and robust link connectivity. The most important property of the DTN is that it can be partitioned into sub-tori of different sizes. This is not possible for mesh and torus-based systems. The DTN is investigated with respect to allocation, embedding, and fault-tolerant embedding. It is shown that the sub-torus allocation problem in the DTN reduces to the sub-mesh allocation problem in the torus. With respect to embedding, it is shown that a topology that can be embedded into a mesh with dilation δ can also be embedded into the DTN with less dilation. In fault-tolerant embedding, a fault-tolerant embedding method based on rotation, column insertion, and column skip is proposed. This method can embed any rectangular grid into its optimal square DTN when the number of faulty nodes is fewer than the number of unused nodes. In conclusion, the DTN is a scalable topology well-suited for massively parallel computation. Sang-Ho Chae, M.S.: He received the B.S. in the Computer Science and Engineering from the Pohang University of Science and Technology (POSTECH) in 1994, and the M.E. in 1996. Since 1996, he works as an Associate Research Engineer in the Central R&D Center of the SK Telecom Co. Ltd. He took part in developing SK Telecom Short Message Server whose subscribers are now over 3.5 million and Advanced Paging System in which he designed and implemented high availability concepts. His research interests are the Fault Tolerance, Parallel Processing, and Parallel Topolgies. Jong Kim, Ph.D.: He received the B.S. degree in Electronic Engineering from Hanyang University, Seoul, Korea, in 1981, the M.S. degree in Computer Science from the Korea Advanced Institute of Science and Technology, Seoul, Korea, in 1983, and the Ph.D. degree in Computer Engineering from Pennsylvania State University, U.S.A., in 1991. He is currently an Associate Professor in the Department of Computer Science and Engineering, Pohang University of Science and Technology, Pohang, Korea. Prior to this appointment, he was a research fellow in the Real-Time Computing Laboratory of the Department of Electrical Engineering and Computer Science at the University of Michigan from 1991 to 1992. From 1983 to 1986, he was a System Engineer in the Korea Securities Computer Corporation, Seoul, Korea. His major areas of interest are Fault-Tolerant Computing, Performance Evaluation, and Parallel and Distributed Computing. Sung Je Hong, Ph.D.: He received the B.S. degree in Electronics Engineering from Seoul National University, Korea, in 1973, the M.S. degree in Computer Science from Iowa State University, Ames, U.S.A., in 1979, and the Ph.D. degree in Computer Science from the University of Illinois, Urbana, U.S.A., in 1983. He is currently a Professor in the Department of Computer Science and Engineering, Pohang University of Science and Technology, Pohang, Korea. From 1983 to 1989, he was a staff member of Corporate Research and Development, General Electric Company, Schenectady, NY, U.S.A. From 1975 to 1976, he was with Oriental Computer Engineering, Korea, as a Logic Design Engineer. His current research interest includes VLSI Design, CAD Algorithms, Testing, and Parallel Processing. Sunggu Lee, Ph.D.: He received the B.S.E.E. degree with highest distinction from the University of Kansas, Lawrence, in 1985 and the M.S.E. and Ph.D. degrees from the University of Michigan, Ann Arbor, in 1987 and 1990, respectively. He is currently an Associate Professor in the Department of Electronic and Electrical Engineering at the Pohang University of Science and Technology (POSTECH), Pohang, Korea. Prior to this appointment, he was an Associate Professor in the Department of Electrical Engineering at the University of Delaware in Newark, Delaware, U.S.A. From June 1997 to July 1998, he spent one year as a Visiting Scientist at the IBM T. J. Watson Research Center. His research interests are in Parallel, Distributed, and Fault-Tolerant Computing. Currently, his main research focus is on the high-level and low-level aspects of Inter-Processor Communications for Parallel Computers.  相似文献   

15.
Information service plays a key role in grid system, handles resource discovery and management process. Employing existing information service architectures suffers from poor scalability, long search response time, and large traffic overhead. In this paper, we propose a service club mechanism, called S-Club, for efficient service discovery. In S-Club, an overlay based on existing Grid Information Service (GIS) mesh network of CROWN is built, so that GISs are organized as service clubs. Each club serves for a certain type of service while each GIS may join one or more clubs. S-Club is adopted in our CROWN Grid and the performance of S-Club is evaluated by comprehensive simulations. The results show that S-Club scheme significantly improves search performance and outperforms existing approaches. Chunming Hu is a research staff in the Institute of Advanced Computing Technology at the School of Computer Science and Engineering, Beihang University, Beijing, China. He received his B.E. and M.E. in Department of Computer Science and Engineering in Beihang University. He received the Ph.D. degree in School of Computer Science and Engineering of Beihang University, Beijing, China, 2005. His research interests include peer-to-peer and grid computing; distributed systems and software architectures. Yanmin Zhu is a Ph.D. candidate in the Department of Computer Science, Hong Kong University of Science and Technology. He received his B.S. degree in computer science from Xi’an Jiaotong University, Xi’an, China, in 2002. His research interests include grid computing, peer-to-peer networking, pervasive computing and sensor networks. He is a member of the IEEE and the IEEE Computer Society. Jinpeng Huai is a Professor and Vice President of Beihang University. He serves on the Steering Committee for Advanced Computing Technology Subject, the National High-Tech Program (863) as Chief Scientist. He is a member of the Consulting Committee of the Central Government’s Information Office, and Chairman of the Expert Committee in both the National e-Government Engineering Taskforce and the National e-Government Standard office. Dr. Huai and his colleagues are leading the key projects in e-Science of the National Science Foundation of China (NSFC) and Sino-UK. He has authored over 100 papers. His research interests include middleware, peer-to-peer (P2P), grid computing, trustworthiness and security. Yunhao Liu received his B.S. degree in Automation Department from Tsinghua University, China, in 1995, and an M.A. degree in Beijing Foreign Studies University, China, in 1997, and an M.S. and a Ph.D. degree in computer science and engineering at Michigan State University in 2003 and 2004, respectively. He is now an assistant professor in the Department of Computer Science and Engineering at Hong Kong University of Science and Technology. His research interests include peer-to-peer computing, pervasive computing, distributed systems, network security, grid computing, and high-speed networking. He is a senior member of the IEEE Computer Society. Lionel M. Ni is chair professor and head of the Computer Science and Engineering Department at Hong Kong University of Science and Technology. Lionel M. Ni received the Ph.D. degree in electrical and computer engineering from Purdue University, West Lafayette, Indiana, in 1980. He was a professor of computer science and engineering at Michigan State University from 1981 to 2003, where he received the Distinguished Faculty Award in 1994. His research interests include parallel architectures, distributed systems, high-speed networks, and pervasive computing. A fellow of the IEEE and the IEEE Computer Society, he has chaired many professional conferences and has received a number of awards for authoring outstanding papers.  相似文献   

16.
In real-life domains, learning systems often have to deal with various kinds of imperfections in data such as noise, incompleteness and inexactness. This problem seriously affects the knowledge discovery process, specifically in the case of traditional Machine Learning approaches that exploit simple or constrained knowledge representations and are based on single inference mechanisms. Indeed, this limits their capability of discovering fundamental knowledge in those situations. In order to broaden the investigation and the applicability of machine learning schemes in such particular situations, it is necessary to move on to more expressive representations which require more complex inference mechanisms. However, the applicability of such new and complex inference mechanisms, such as abductive reasoning, strongly relies on a deep background knowledge about the specific application domain. This work aims at automatically discovering the meta-knowledge needed to abduction inference strategy to complete the incoming information in order to handle cases of missing knowledge. Floriana Esposito received the Laurea degree in electronic Physics from the University of Bari, Italy, in 1970. Since 1994 is Full Professor of Computer Science at the University of Bari and Dean of the Faculty of Computer Science from 1997 to 2002. She founded and chairs the Laboratory for Knowledge Acquisition and Machine Learning of the Department of Computer Science. Her research activity started in the field of numerical models and statistical pattern recognition. Then her interests moved to the field of Artificial Intelligence and Machine Learning. The current research concerns the logical and algebraic foundations of numerical and symbolic methods in machine learning with the aim of the integration, the computational models of incremental and multistrategy learning, the revision of logical theories, the knowledge discovery in data bases. Application include document classification and understanding, content based document retrieval, map interpretation and Semantic Web. She is author of more than 270 scientific papers and is in the scientific committees of many international scientific Conferences in the field of Artificial Intelligence and Machine Learning. She co-chaired ICML96, MSL98, ECML-PKDD 2003, IEA-AIE 2005, ISMIS 2006. Stefano Ferilli was born in 1972. After receiving his Laurea degree in Information Science in 1996, he got a Ph.D. in Computer Science at the University of Bari in 2001. Since 2002 he is an Assistant Professor at the Department of Computer Science of the University of Bari. His research interests are centered on Logic and Algebraic Foundations of Machine Learning, Inductive Logic Programming, Theory Revision, Multi-Strategy Learning, Knowledge Representation, Electronic Document Processing and Digital Libraries. He participated in various National and European (ESPRIT and IST) projects concerning these topics, and is a (co-)author of more than 80 papers published on National and International journals, books and conferences/workshops proceedings. Teresa M.A. Basile got the Laurea degree in Computer Science at the University of Bari, Italy (2001). In March 2005 she discussed a Ph.D. thesis in Computer Science at the University of Bari titled “A Multistrategy Framework for First-Order Rules Learning.” Since April 2005, she is a research at the Computer Science Department of the University of Bari working on methods and techniques of machine learning for the Semantic Web. Her research interests concern the investigation of symbolic machine learning techniques, in particular of the cooperation of different inferences strategies in an incremental learning framework, and their application to document classification and understanding based on their semantic. She is author of about 40 papers published on National and International journals and conferences/workshops proceedings and was/is involved in various National and European projects. Nicola Di Mauro got the Laurea degree in Computer Science at the University of Bari, Italy. From 2001 he went on making research on machine learning in the Knowledge Acquisition and Machine Learning Laboratory (LACAM) at the Department of Computer Science, University of Bari. In March 2005 he discussed a Ph.D. thesis in Computer Science at the University of Bari titled “First Order Incremental Theory Refinement” which faces the problem of Incremental Learning in ILP. Since January 2005, he is an assistant professor at the Department of Computer Science, University of Bari. His research activities concern Inductive Logic Programming (ILP), Theory Revision and Incremental Learning, Multistrategy Learning, with application to Automatic Document Processing. On such topics HE is author of about 40 scientific papers accepted for presentation and publication on international and national journals and conference proceedings. He took part to the European projects 6th FP IP-507173 VIKEF (Virtual Information and Knowledge Environment Framework) and IST-1999-20882 COLLATE (Collaboratory for Annotation, Indexing and Retrieval of Digitized Historical Archive Materials), and to various national projects co-funded by the Italian Ministry for the University and Scientific Research.  相似文献   

17.
In the past decade, compositional modelling (CM) has established itself as the predominant knowledge-based approach to construct mathematical (simulation) models automatically. Although it is mainly applied to physical systems, there is a growing interest in applying CM to other domains, such as ecological and socio-economic systems. Inspired by this observation, this paper presents a method for extending the conventional CM techniques to suit systems that are fundamentally presented by interacting populations of individuals instead of physical components or processes. The work supports building model repositories for such systems, especially in addressing the most critical outstanding issues of granularity and disaggregation in ecological systems modelling. Jeroen Keppens is a lecturer in the Department of Computer Science at King’s College London, working in the Software Engineering Group. His research interests include Approximate and Qualitative Reasoning, Model Based Reasoning, Automated Model Construction and Applications of Artificial Intelligence in Law and Ecological Modelling. Dr. Keppens has published around 25 peer reviewed publications in these areas. Qiang Shen is a Professor and the Director of Research with the Department of Computer Science at the University of Wales, Aberystwyth, UK. He is also an Honorary Fellow at the University of Edinburgh, UK. His research interests include fuzzy systems, knowledge modelling, qualitative reasoning, and pattern recognition. Prof. Shen serves as an associate editor or editorial board member of a number of world leading journals, including the IEEE Transactions on Systems, Man, and Cybernetics (Part B), the IEEE Transactions on Fuzzy Systems, and Fuzzy Sets and Systems. He has acted as a Chair or Co-chair at a good number of major conferences in the field of Computational Intelligence. He has published a book and over 170 peer-refereed articles in international journals and conferences in Artificial Intelligence and related areas.  相似文献   

18.
The present contribution describes a potential application of Grid Computing in Bioinformatics. High resolution structure determination of biological specimens is critical in BioSciences to understanding the biological function. The problem is computational intensive. Distributed and Grid Computing are thus becoming essential. This contribution analyzes the use of Grid Computing and its potential benefits in the field of electron microscope tomography of biological specimens. Jose-Jesus Fernandez, Ph.D.: He received his M.Sc. and Ph.D. degrees in Computer Science from the University of Granada, Spain, in 1992 and 1997, respectively. He was a Ph.D. student at the Bio-Computing unit of the National Center for BioTechnology (CNB) from the Spanish National Council of Scientific Research (CSIC), Madrid, Spain. He became an Assistant Professor in 1997 and, subsequently, Associate Professor in 2000 in Computer Architecture at the University of Almeria, Spain. He is a member of the supercomputing-algorithms research group. His research interests include high performance computing (HPC), image processing and tomography. Jose-Roman Bilbao-Castro: He received his M.Sc. degree in Computer Science from the University of Almeria in 2001. He is currently a Ph.D. student at the BioComputing unit of the CNB (CSIC) through a Ph.D. CSIC-grant in conjuction with Dept. Computer Architecture at the University of Malaga (Spain). His current research interestsinclude tomography, HPC and distributed and grid computing. Roberto Marabini, Ph.D.: He received the M.Sc. (1989) and Ph.D. (1995) degrees in Physics from the University Autonoma de Madrid (UAM) and University of Santiago de Compostela, respectively. He was a Ph.D. student at the BioComputing Unit at the CNB (CSIC). He worked at the University of Pennsylvania and the City University of New York from 1998 to 2002. At present he is an Associate Professor at the UAM. His current research interests include inverse problems, image processing and HPC. Jose-Maria Carazo, Ph.D.: He received the M.Sc. degree from the Granada University, Spain, in 1981, and got his Ph.D. in Molecular Biology at the UAM in 1984. He left for Albany, NY, in 1986, coming back to Madrid in 1989 to set up the BioComputing Unit of the CNB (CSIC). He was involved in the Spanish Ministry of Science and Technology as Deputy General Director for Research Planning. Currently, he keeps engaged in his activities at the CNB, the Scientific Park of Madrid and Integromics S.L. Immaculada Garcia, Ph.D.: She received her B.Sc. (1977) and Ph.D. (1986) degrees in Physics from the Complutense University of Madrid and University of Santiago de Compostela, respectively. From 1977 to 1987 she was an Assistant professor at the University of Granada, from 1987 to 1996 Associate professor at the University of Almeria and since 1997 she is a Full Professor and head of Dept. Computer Architecture. She is head of the supercomputing-algorithms research group. Her research interest lies in HPC for irregular problems related to image processing, global optimization and matrix computation.  相似文献   

19.
In this paper, we propose as a new challenge a public opinion channel which can provide a novel communication medium for sharing and exchanging opinions in a community. Rather than simply developing a means of investigating public opinion, we aim at an active medium that can facilitate mutual understanding, discussion, and public opinion formation. First, we elaborate the idea of public opinion channels and identify key issues. Second, we describe our first step towards the goal using the talking virtualized egos metaphor. Finally, we discuss a research agenda towards the goal. Toyoaki Nishida, Dr.Eng.: He is a professor of Department of Information and Communication Engineering, School of Engineering, The University of Tokyo. He received the B.E., the M.E., and the Doctor of Engineering degrees from Kyoto University in 1977, 1979, and 1984 respectively. His research centers on artificial intelligence in general. His current research focuses on community computing and support systems, including knowledge sharing, knowledge media, and agent technology. He has been leading the Breakthrough 21 Nishida Project, sponsored by Ministry of Posts and Telecommunications, Japan, aiming at understanding and assisting networked communities. Since 1997, he is a trustee for JSAI (Japanese Society for Artificial Intelligence), and serves as the program chair of 1999 JSAI Annual Convention. He is an area editor (intelligent systems) of New Generation Computing and an editor of Autonomous Agents and Multiagent Systems. Nobuhiko Fujihara, Ph.D.: He is a fellow of Breakthrough 21 Nishida project, Communications Research Laboratory sponsored by Ministry of Posts and Telecommunications, Japan. He received the B.E., the M.E., and the Ph.D. in Human Sciences degrees from Osaka University in 1992, 1994, and 1998 respectively. He has a cognitive psychological background. His current research focuses on: (1) cognitive psychological analysis of human behavior in a networked community, (2) investigation of information comprehension process, (3) assessment and proposition of communication tools in networking society. Shintaro Azechi: He is a fellow of Breakthrough 21 Nishida project, Communications Research Laboratory sponsored by Ministry of Posts and Telecommunications, Japan. He received the B.E. and the M.E. of Human Sciences degrees from Osaka University in 1994 and 1996 respectively. He is a Doctoral Candidate of Graduate School of Human Sciences, Osaka University. His current researches focus on (1) human behavior in networking community (2) social infomation process in human mind (3) development of acessment technique for communication tools in networkingsociety. His approach is from social psychological view. Kaoru Sumi, Dr.Eng.: She is a Researcher of Breakthrough 21 Nishida Project. She received her Bachelor of Science at School of Physics, Science University of Tokyo. She received her Master of Systems Management at Graduate School of Systems Management, The university of Tsukuba. She received her Doctor of engineering at Graduate School of Engineering, The University of Tokyo. Her research interests include knowledge-based systems, creativity supporting systems, and their applications for facilitating human collaboration. She is a member of the Information Processing Society of Japan (IPSJ), the Japanese Society for Artificial Intelligence (JSAI). Hiroyuki Yano, Dr.Eng.: He is a senior research official of Kansai Advanced Research Center, Communications Research Laboratory, Ministry of Posts and Telecommunications. He received the B.E., the M.E., and the Doctor of Engineering degrees from Tohoku University in 1986, 1988, and 1993 respectively. His interests of research include cognitive mechanism of human communications. His current research focuses on discourse structure, human interface, and dialogue systems for human natural dialogues. He is a member of the Japanese Society for Artificial Intelligence, the Association for Natural Language Processing, and the Japanese Cognitive Science Society. Takashi Hirata: He is a doctor course student in Graduate School of Information Scienc at Nara Institute of Science and Technology (NAIST). He received a master of engineering from NAIST in 1998. His research interest is knowledge media and knowledge sharing. He is a member of Information Processing Society of Japan (IPSJ), Japan Association for Artificial Intelligence (JSAI) and The Institute of Systems, Control and Information Engineers (ISCIE).  相似文献   

20.
We propose in this paper an inference method called Bottom Generalization for Inductive Logic Programming (ILP, for short). We give an inference procedure based on it, and prove that a hypothesis clauseH is derived by the procedure from an exampleE under a background theoryB iffH subsumesE relative toB in Plotkin’s sense. The theoryB can be any clausal theory, and the exampleE can be any clause which is not implied byB. The derived hypothesisH is a clause, but is not always definite. The result is proved by defining a declarative semantics for arbitrary consistent clausal theories, and showing that SB-resolution, which was originally introduced by Plotkin, gives their complete procedural semantics. We also show that Bottom Generalization is more powerful than both Jung’s method based on theV-operator and Saturant Generalization by Rouveirol, but not than Inverse Entailment by Muggleton. At the ILP ’97 workshop we called our inference method “Inverse Entailment,” but we have renamed it “Bottom Generalization” because we found that it differs from the original definition of Inverse Entailment. The main part of this work was accomplished while the author was visiting the Artificial Intelligence Group, Department of Computer Science, Technical University Darmstadt, Germany. Akihiro Yamamoto, Dr.: He is an Associate Professor of the Division of Electronics and Information Engineering at Hokkaido University. He received the B.S. degree from Kyoto University in 1985, and the M.S. and Dr.Sci. degrees from Kyushu University in 1987 and 1990 respectively. He was a guest researcher of Oxford University Computing Laboratory, the United Kingdom, from January 1996 to March 1996, and of Department of Computer Science at Technical University Darmstadt, Germany, from June 1996 to May 1997. His present interests include the application of Logic Programming and Theorem Proving to Machine Learning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号