首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 156 毫秒
1.
针对0.13 μm和0.35 μm工艺尺寸的两款商用SRAM器件进行了脉冲激光背部单粒子翻转效应试验方法研究。单粒子翻转效应主要测试单粒子翻转阈值和单粒子翻转截面,本文主要研究了激光聚焦深度、激光脉冲注量、测试模式和芯片配置的数据对测试两者的影响。试验结果表明:只有聚焦到芯片有源区才可测得最低的翻转阈值和最大的翻转截面,此时的结果与重离子结果基本一致;注量对翻转阈值测试无影响,但注量增大时翻转截面会减小,测试时激光脉冲注量应小于1×107cm-2;测试模式和存储数据对翻转阈值和翻转截面的影响不大,测试时可不考虑。  相似文献   

2.
利用脉冲激光模拟试验装置对IDT公司0.13 μm工艺IDT71V416S SRAM的单粒子效应进行了试验研究。在3.3 V正常工作电压下,试验测量了单粒子翻转阈值和截面、单粒子闩锁阈值和闩锁电流及其与写入数据和工作状态的关系。单粒子翻转试验研究表明,该器件对翻转极敏感,测得的翻转阈值与重离子、质子试验结果符合较好;该器件对多位翻转较敏感,其中2位翻转占绝大部分且其所占比例随辐照激光能量增加而增大,这与重离子试验结果也一致。单粒子闩锁试验分析了闩锁效应的区域性特点,发现了器件闩锁电流呈微小增大的现象,即表现出单粒子微闩锁效应,分析了这种现象对传统的抗闩锁电路设计可能造成的影响。  相似文献   

3.
通过测试基于静态随机存储器(SRAM)的现场可编程门阵列(FPGA)芯片的单粒子效应,研究脉冲激光的试验方法,评估脉冲激光试验单粒子效应的有效性。研究表明,激光光斑聚焦深度和激光注量是影响脉冲激光单粒子效应试验的重要因素。试验发现,脉冲激光在较高能量时,单个激光脉冲会触发多个配置存储位发生单粒子翻转,造成芯片饱和翻转截面偏大。激光辐照芯片时,观察到芯片的内核工作电流以1~2 mA的幅度逐渐增加,在此期间器件工作正常。试验获得了Virtex 2 FPGA芯片的静态单粒子翻转截面和翻转阈值。通过对比激光与重离子的试验结果发现,二者在测试器件单粒子翻转方面基本一致,脉冲激光可有效研究芯片的单粒子效应特性。  相似文献   

4.
单粒子效应辐射模拟实验研究进展   总被引:5,自引:0,他引:5  
贺朝会  李永宏  杨海亮 《核技术》2007,30(4):347-351
应用质子直线加速器进行了静态随机存取存储器(SRAM)的单粒子效应模拟实验研究.采用金箔散射法降低质子束流,研制了弱流质子束测量系统,测量散射后的质子束流,实验测得SRAM质子单粒子翻转截面为10-14 cm2/bit量级.利用重离子加速器和锎源进行了SRAM的单粒子效应实验.研究其单粒子翻转截面与重离子线性能量传输(LET)值的关系,得到了单粒子翻转阈值和饱和截面.实验表明252Cf源单粒子翻转截面与串列加速器的重离子单粒子翻转截面一致,说明对于SRAM,可以用252Cf源替代重离子加速器测量单粒子翻转饱和截面.与中国原子能研究院、东北微电子研究所合作开展了国内首次重离子微束单粒子效应实验.建立了大规模集成电路重离子微束单粒子效应实验方法,找到了国产SRAM的单粒子翻转敏感区.应用14MeV强流中子发生器进行了SRAM单粒子效应实验,测得了64K位至4M位SRAM器件14MeV中子单粒子翻转截面.用α源进行SRAM单粒子效应辐照实验,模拟封装材料中的232Th和238U杂质发射出的α粒子导致的单粒子翻转.测量α粒子射入SRAM导致的单粒子翻转错误数,计算单粒子翻转截面和失效率,比较三种器件的抗单粒子翻转能力,为器件的选型提供依据.并开展了路由器的α粒子辐照实验,复演了路由器在自然环境中的出错情况,为路由器的设计改进提供了依据.  相似文献   

5.
SRAM K6R4016V1D单粒子闩锁及防护试验研究   总被引:1,自引:0,他引:1  
本工作利用脉冲激光单粒子效应模拟试验装置对三星公司的SRAM K6R4016V1D进行了单粒子闩锁效应试验研究。试验测得了此器件的单粒子闩锁效应脉冲激光能量阈值、闩锁截面曲线和闩锁电流。针对这款器件,还对工程中防护闩锁过流常用的限流和断电方法进行了试验研究。试验结果表明,该器件具有非常低的单粒子闩锁效应阈值能量和很高的闩锁饱和截面,对空间辐射环境极其敏感。  相似文献   

6.
利用4种不同线性能量转换值的重离子对一款65nm三阱CMOS静态随机存储器(SRAM)进行重离子垂直辐照实验,将多位翻转图形、位置和事件数与器件结构布局结合对器件单粒子翻转截面、单粒子事件截面及多位翻转机理进行深入分析。结果表明,单粒子事件截面大于单个存储单元内敏感结点面积,单粒子翻转截面远大于单个存储单元面积。多位翻转事件数和规模的显著增长导致单粒子翻转截面远大于单粒子事件截面,多位翻转成为SRAM单粒子翻转的主要来源。结合器件垂直阱隔离布局及横向寄生双极晶体管位置,分析得到多位翻转主要由PMOS和NMOS晶体管的双极效应引起,且NMOS晶体管的双极效应是器件发生多位翻转的主要原因。  相似文献   

7.
为评估IDT6116SRAM单粒子敏感性,采用地面试验方法和地面试验系统,利用脉冲激光、重离子和252Cf源3种不同的地面模拟源,对IDT6116SRAM器件进行单粒子敏感性试验研究,并对3种不同的模拟源的试验结果进行等效性分析比较,同时进行总剂量效应对单粒子效应影响的试验研究。研究结果表明:IDT6116SRAM抗单粒子翻转和锁定的能力较强;接受一定辐照剂量后的试验样品对单粒子翻转更加敏感,且翻转阈值略有降低,翻转截面略有增大。  相似文献   

8.
重离子和脉冲激光模拟单粒子翻转阈值等效性研究   总被引:1,自引:0,他引:1  
根据重离子和脉冲激发诱发单粒子翻转机理,分析了重离子和脉冲激光模拟单粒子翻转阈值(激光能量与重离子线性能量转移(LET))等效方法,得出脉冲激光与重离子单粒子翻转阈值等效计算公式。应用实验室的激光模拟单粒子效应试验系统,开展了几种器件和集成电路的单粒子翻转实验研究。利用获得的计算公式计算激光等效LET阈值,并与国内外重离子实测数据进行比较。结果表明,脉冲激光能量等效LET阈值与重离子试验LET阈值较为一致。  相似文献   

9.
应用^252Cf源和^60Coγ源进行单粒子翻转斋与γ累积剂量的关系研究,实验结果表明,静态加电和不加电状态下,γ累积剂量对单粒子翻转截面的影响不大,无明显的规律。动态测量状态下,在存储单元中写入相同数据时,器件的单粒子翻转截面随累积剂量的增加而增大。在实验中把存储单元中的数据相反,会使器件的单粒子翻转截面水经^60Coγ源辐照时的水平,甚至更低,从而抵消了累积剂量对单粒子翻转截面的影响。  相似文献   

10.
铁电存储器激光微束单粒子效应试验研究   总被引:1,自引:0,他引:1  
利用脉冲激光微束单粒子效应(SEE)模拟装置,研究了铁电存储器(FRAM)工作频率对其单粒子翻转(SEU)的影响。研究结果表明,随工作频率的降低,被测器件SEU截面显著增大,且翻转是由外围电路引发的。被测芯片1→0翻转截面明显大于0→1翻转截面。对FRAM工作时序及不同芯片使能信号(CE)占空比下SEU截面的分析表明,频率降低导致的CE有效时间延长与SEU截面的增大有直接关系。本文同时开展了FRAM不同功能模块的单粒子锁定(SEL)敏感性试验,获得了相应的SEL阈值能量和饱和截面,并研究了静态和动态工作模式下由SEL引发的数据翻转情况,发现动态模式下被测器件更易受SEL影响而发生翻转。  相似文献   

11.
针对22 nm全耗尽绝缘体上硅(FDSOI)工艺静态随机存储器(SRAM)开展了重离子实验,对比了不同加固设计的FDSOI SRAM的抗单粒子翻转(SEU)和多单元翻转(MCU)能力,分析了读写错误致存储阵列MCU的效应表征和作用机制,揭示了衬底偏置对FDSOI SRAM SEU敏感性的影响机理。研究结果表明:对5款被测FDSOI SRAM而言,抗SEU能力由弱到强依次为八管加固型SRAM2、冗余加固型SRAM1、双互锁结构(DICE)型SRAM3或SRAM4、双DICE型SRAM5;3款DICE型FDSOI SRAM的存储阵列自身抗MCU性能优于其他两款SRAM;虽然DICE型FDSOI SRAM的存储阵列自身抗MCU能力强,但读写错误致存储阵列MCU的影响不可忽略,且该影响随SRAM工作频率的提高愈加严重;衬底偏置通过对寄生双极放大效应的控制来影响FDSOI SRAM的SEU敏感性。  相似文献   

12.
Heavy ion-induced single event upsets(SEUs)of static random access memory(SRAM), integrated with three-dimensional integrated circuit technology, are evaluated using a Monte Carlo simulation method based on the Geant4 simulation toolkit. The SEU cross sections and multiple cell upset(MCU) susceptibility of 3D SRAM are explored using different types and energies of heavy ions.In the simulations, the sensitivities of different dies of 3D SRAM show noticeable discrepancies for low linear energy transfers(LETs). The average percentage of MCUs of 3D SRAM increases from 17.2 to 32.95%, followed by the energy of ~(209)Bi decreasing from 71.77 to 38.28 MeV/u. For a specific LET, the percentage of MCUs presents a notable difference between the face-to-face and back-toface structures. In the back-to-face structure, the percentage of MCUs increases with a deeper die, compared with the face-to-face structure. The simulation method and process are verified by comparing the SEU cross sections of planar SRAM with experimental data. The upset cross sections of the planar process and 3D integrated SRAM are analyzed. The results demonstrate that the 3D SRAM sensitivity is not greater than that of the planar SRAM. The 3D process technology has the potential to be applied to the aerospace and military fields.  相似文献   

13.
A dual double interlocked storage cell(DICE)interleaving layout static random-access memory(SRAM)is designed and manufactured based on 65 nm bulk com-plementary metal oxide semiconductor technology.The single event upset(SEU)cross sections of this memory are obtained via heavy ion irradiation with a linear energy transfer(LET)value ranging from 1.7 to 83.4 MeV/(mg/cm2).Experimental results show that the upset threshold(LETth)of a 4 KB block is approximately 6 MeV/(mg/cm2),which is much better than that of a standard unhardened SRAM with an identical technology node.A 1 KB block has a higher LETth of 25 MeV/(mg/cm2)owing to the use of the error detection and correction(EDAC)code.For a Ta ion irradiation test with the highest LET value(83.4 MeV/(mg/cm2)),the benefit of the EDAC code is reduced significantly because the multi-bit upset pro-portion in the SEU is increased remarkably.Compared with normal incident ions,the memory exhibits a higher SEU sensitivity in the tilt angle irradiation test.Moreover,the SEU cross section indicates a significant dependence on the data pattern.When comprehensively considering HSPICE simulation results and the sensitive area distri-butions of the DICE cell,it is shown that the data pattern dependence is primarily associated with the arrangement of sensitive transistor pairs in the layout.Finally,some sug-gestions are provided to further improve the radiation resistance of the memory.By implementing a particular design at the layout level,the SEU tolerance of the memory is improved significantly at a low area cost.Therefore,the designed 65 nm SRAM is suitable for electronic systems operating in serious radiation environments.  相似文献   

14.
利用中国原子能科学研究院100 MeV质子回旋加速器开展了一系列不同特征尺寸双数据速率(DDR)静态随机存储器(SRAM)单粒子效应实验研究。获得了不同能量、不同入射角度下3款SRAM的单粒子翻转(SEU)截面曲线。分析了入射质子能量及角度对不同特征尺寸SRAM的SEU饱和截面的影响和效应规律,并利用蒙特卡罗方法对65 nm SRAM SEU特性进行了模拟。研究结果表明:随特征尺寸的减小,SEU饱和截面会出现不同程度的降低,但降低程度会由于多单元翻转(MCU)的增多而变缓;随入射角度的增加,MCU规模及数量的增加导致器件截面增大;3款SRAM所采用的位交错技术并不能有效抑制多位翻转(MBU)的发生。  相似文献   

15.
单粒子翻转(SEU)是影响空间电子设备可靠性的重要因素,本文提出了一种SEU甄别与定位技术方法,研制了原理样机。硅探测器与辐照敏感器件在垂直方向相互临近安装,粒子入射到硅探测器的位置区域与目标辐照器件单粒子翻转的物理位置相对应。采用波形数字化技术实现了多道粒子甄别与能量信号测量,通过数据回读比较法实现了SRAM器件翻转逻辑定位检测。根据实验室测试和单粒子辐照试验结果,可探测高能粒子的LET≥6?06×10-3 MeV·cm2/mg,入射粒子的位置分辨率优于5 mm,最大计数率≥10 000 s-1,SRAM器件的SEU巡检周期时间分辨率为13?76 ms。通过掌握大容量SRAM型器件的SEU甄别与定位及其辐射环境感知能力,有助于提升空间电子设备的在轨工作性能。  相似文献   

16.
本文研究了215~353 K温度范围内商用4M 0.15 μm薄膜晶体管结构SRAM单粒子翻转(SEU)截面随温度的变化。实验结果显示,在截面曲线饱和区,SEU截面基本不随温度变化;在截面曲线上升区,SEU截面随温度的升高而增加。使用Space Radiation 7.0软件研究了温度对其空间错误率预估的影响,模拟结果显示,SEU截面随温度的变化改变了SRAM SEU截面-LET值曲线形状,导致其LET阈值漂移,从而影响空间错误率预估结果  相似文献   

17.
65 nm工艺SRAM低能质子单粒子翻转实验研究   总被引:1,自引:1,他引:0  
基于北京HI-13串列加速器质子源及技术改进工作,获得2~15 MeV低能质子束流。针对商业级65 nm工艺4M×18 bit大容量随机静态存储器(SRAM),开展了质子单粒子翻转实验研究。实验结果表明,低能质子通过直接电离机制可在存储器中引起显著的单粒子翻转,其翻转截面较核反应机制引起的翻转截面大2~3个数量级。结合实验数据分析了质子翻转机制、LET值及射程、临界电荷及空间软错误率等,分析结果表明,实验器件翻转临界电荷约为0.97 fC,而低能质子超过高能质子成为质子软错误率的主要贡献因素。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号