首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Error modelling and compensating technology is an effective method to improve the processing precision.The position and orientation deviation of workpiece is caused by the fixing and manufacturing erro...  相似文献   

2.
Surface quality is a major factor affecting the performance of a component. The machined surface quality is strongly influenced by the external loads during the fixturing and machining processes. In machining process development, it is highly desirable to predict the quality of a machined surface. For this purpose, an integrated finite element analysis (FEA) model of the entire fixture–workpiece system is developed to investigate the influence of clamping preload and machining force on the surface quality of the machined workpiece. The effects of fixture and machine table compliance (from experimental data), and the workpiece and its locators/clamps contact interaction, and forced vibration, on the machined surface quality are taken into account. This simulation model provides a better understanding of the causes of surface error and a more realistic prediction of the machined surface quality. The deck face of a V-type engine block subjected to fixture clamping and a face milling operation is given as an example. A comparison between the simulation result and experimental data shows a reasonable agreement.  相似文献   

3.
Currently, simultaneously ensuring the machining accuracy and efficiency of thin-walled structures especially high performance parts still remains a challenge. Existing compensating methods are mainly focusing on 3-aixs machining, which sometimes only take one given point as the compensative point at each given cutter location. This paper presents a redesigned surface based machining strategy for peripheral milling of thin-walled parts. Based on an improved cutting force/heat model and finite element method(FEM) simulation environment, a deflection error prediction model, which takes sequence of cutter contact lines as compensation targets, is established. And an iterative algorithm is presented to determine feasible cutter axis positions. The final redesigned surface is subsequently generated by skinning all discrete cutter axis vectors after compensating by using the proposed algorithm. The proposed machining strategy incorporates the thermo-mechanical coupled effect in deflection prediction, and is also validated with flank milling experiment by using five-axis machine tool. At the same time, the deformation error is detected by using three-coordinate measuring machine. Error prediction values and experimental results indicate that they have a good consistency and the proposed approach is able to significantly reduce the dimension error under the same machining conditions compared with conventional methods. The proposed machining strategy has potential in high-efficiency precision machining of thin-walled parts.  相似文献   

4.
Machining fixtures are used to locate and constrain a workpiece during a machining operation. To ensure that the workpiece is manufactured according to specified dimensions and tolerances, it must be appropriately located and clamped. Minimising workpiece and fixture tooling deflections due to clamping and cutting forces in machining is critical to machining accuracy. An ideal fixture design maximises locating accuracy and workpiece stability, while minimising displacements.The purpose of this research is to develop a method for modelling workpiece boundary conditions and applied loads during a machining process, analyse modular fixture tool contact area deformation and optimise support locations, using finite element analysis (FEA). The workpiece boundary conditions are defined by locators and clamps. The locators are placed in a 3-2-1 fixture configuration, constraining all degrees of freedom of the workpiece and are modelled using linear spring-gap elements. The clamps are modelled as point loads. The workpiece is loaded to model cutting forces during drilling and milling machining operations. Fixture design integrity is verified. ANSYS parametric design language code is used to develop an algorithm to automatically optimise fixture support and clamp locations, and clamping forces, to minimise workpiece deformation, subsequently increasing machining accuracy. By implementing FEA in a computer-aided-fixture-design environment, unnecessary and uneconomical “trial and error” experimentation on the shop floor is eliminated.  相似文献   

5.
薄壁件加工变形控制快速仿真平台开发   总被引:1,自引:0,他引:1  
为控制薄壁件装夹变形和加工变形,建立了集装夹优化、加工变形预测、切削参数优化及误差补偿功能为一体的快速仿真平台.在平台实现中,装夹方案的优化采用基于形位公差控制的方法,通过多种装夹方案的比较,确定优化方案.加工变形预测时考虑了前-层变形对后-层切削深度的影响,并使切削力和加工变形达到动态平衡.为获得优化切削参数,建立了以变形控制为目标的优化模型.采用有限元法计算加工变形,采用遗传算法求解优化模型.为解得优化补偿量,仿真时考虑了变形与力的耦合效应.完成了基于ABAQUS的快速仿真平台开发.以镜座零件为例进行仿真,求得了优化的装夹方案和切削参数,验证了平台的可行性.  相似文献   

6.
In machining process, fixture is used to keep the position and orientation of a workpiece with respect to machine tool frame. However, the workpiece always cannot be at its ideal position because of the setup error and geometric inaccuracy of the locators, clamping force, cutting force, and so on. It is necessary to predict and control the workpiece locating error which will result in machining error of parts. This paper presents a prediction model of a workpiece locating error caused by the setup error and geometric inaccuracy of locaters for the fixtures with one locating surface and two locating pins. Error parameters along 6 degrees of freedom can be calculated by the proposed model and then compensated by either using the “frame transformation” function of a numerical control (NC) system or modifying NC codes in post-processing. In addition, machining error caused by the workpiece locating error can be predicted based on a multi-body system and homogeneous transfer matrix. This is meaningful to fixture design and machining process planning. Finally, a cutting test has shown that the proposed method is practicable and effective.  相似文献   

7.
根据变速箱拨叉轴上圆弧槽相对位置准确、系列拨叉轴可以在一套夹具上装夹、多个零件同时加工的加工要求,设计了一种分体式气动铣床夹具。夹具采用定位块限位拨叉轴端面、燕尾面支承拨叉轴外圆的定位方式,工件外圆多点气动夹紧。通过两级增力机构,增大夹紧力。柔性传动力矩,消除了交变铣削力作用下产生的振动。依据切削力的计算选择了气缸规格。本设计实现了工件在夹具中成组布置,提高了生产效率,保证了加工质量。  相似文献   

8.
Workpiece motion arising from localised elastic deformation at fixture-workpiece contacts owing to clamping and machining forces is known to affect significantly the workpiece location accuracy and, hence, the final part quality. This effect can be minimised through fixture design optimisation. The clamping force is a critical design variable that can be optimised to reduce the workpiece motion. This paper presents a new method for determining the optimun clamping forces for a multiple clamp fixture subjected to quasu-static machining forces. The method uses elastic contact mechanics models to represent the fixture-workpiece contact and involves the formulation and solution of a multi-objective constrained oprimisation model. The impact of clamping force optimisation on workpiece location accuracy is analysed through examples involving a 3-2-1 type milling fixture.  相似文献   

9.
In any machining fixture, the workpiece elastic deformation caused during machining influences the dimensional and form errors of the workpiece. Placing each locator and clamp in an optimal place can minimize the elastic deformation of the workpiece, which in turn minimizes the dimensional and form errors of the workpiece. Design of fixture configuration (layout) is a procedure to establish the workpiece–fixture contact through optimal positioning of clamping and locating elements. In this paper, an ant colony algorithm (ACA) based discrete and continuous optimization methods are applied for optimizing the machining fixture layout so that the workpiece elastic deformation is minimized. The finite element method (FEM) is used for determining the dynamic response of the workpiece caused due to machining and clamping forces. The dynamic response of the workpiece is simulated for all ACA runs. This paper proves that the ACA-based continuous fixture layout optimization method exhibits the better results than that of ACA-based discrete fixture layout optimization method.  相似文献   

10.
在夹具设计过程中,工件-夹具之间的接触力是工件稳定性分析和加工精度估算的关键因素.为此,根据多重夹紧力对工件的作用过程,建立了接触力与多重夹紧力的大小、作用点以及夹紧顺序之间的接触力模型.基于总余能原理,提出了接触力模型的求解算法.最后通过典型实例,详细说明了接触力的分析预测过程.  相似文献   

11.
结合被加工零件的结构及加工工艺特点,设计制造了一款专用铣床气动多功能夹具。为保证夹具具有良好的强度,运用ANSYS Workbench软件对夹具工件系统进行了平面铣削和钻孔过程受力仿真分析。结果表明:装配件在钻削力和切削力作用下,产生的最大应力远小于材料的屈服强度,且最大位移值在加工公差范围内。经样品试制、现场实验检验,使用专用夹具生产出来的产品,其工件尺寸和几何误差均满足精度要求,达到预期目标。因此,该夹具结构设计合理,具有一定的推广应用价值。  相似文献   

12.
This paper presents a theoretical model by which cutting forces and machining error in ball end milling of curved surfaces can be predicted. The actual trochoidal paths of the cutting edges are considered in the evaluation of the chip geometry. The cutting forces are evaluated based on the theory of oblique cutting. The machining errors resulting from force induced tool deflections are calculated at various parts of the machined surface. The influences of various cutting conditions, cutting styles and cutting modes on cutting forces and machining error are investigated. The results of this study show that in contouring, the cutting force component which influences the machining error decreases with increase in milling position angle; while in ramping, the two force components which influence machining error are hardly affected by the milling position angle. It is further seen that in contouring, down cross-feed yields higher accuracy than up cross-feed, while in ramping, right cross-feed yields higher accuracy than left cross-feed. The machining error generally decreases with increase in milling position angle.  相似文献   

13.
虚拟加工中的加工误差分析与预测   总被引:8,自引:0,他引:8  
分析了影响虚拟环境下复杂曲面产品数字化端铣加工误差产生的主要因素,综合考虑刀具和工件的柔度,同时考虑加工表面的变形敏感度,讨论面向虚拟制造的加工尺寸误差预测模型总体框架,提出了一个端铣加工过程表面加工尺寸误差预测模型。所给出的表面误差预测模型较全面地考虑了端铣加工过程,适于多种加工条件,能够反映端铣加工过程由切削力导致的系统变形对加工误差所造成的影响。最后给出了一个仿真实例。  相似文献   

14.
Geometric errors remarkably affect the dimensional accuracy of parts manufactured by ultra-precision machining. It is vital to consider the workpiece shape for the identification of crucial error types. This research investigates the prioritization analysis of geometric errors for arbitrary curved surfaces by using random forest. By utilizing multi-body system (MBS) theory, a volumetric error model is initially established to calculate tool position errors. An error dataset, which contains information of 21 geometric errors, workpiece shape, and dimensional errors, is then constructed by discretizing the workpiece surface along the tool path. The problem of identifying crucial geometric errors is translated into another problem of feature selection by applying random forest on the error dataset. Moreover, the influence extent of each geometric error on the dimensional accuracy of four typical curved surfaces is analyzed through numerical simulation, and crucial geometric errors are identified based on the proposed method. Then, an iterative method of error compensation is proposed to verify the reasonability of the determined crucial geometric errors by specifically compensating them. Finally, under compensated and uncompensated conditions, two sinusoidal grid surfaces are machined on an ultra-precision lathe to validate the prioritization analysis method. Findings show that the machining accuracy of the sinusoidal grid surface with crucial geometric error compensation is better than that without compensation.  相似文献   

15.
虚拟制造中基于刀具变形的复杂曲面加工误差预报   总被引:1,自引:0,他引:1  
复杂曲面加工过程中刀具的弹性变形是产生曲面加工误差的重要原始误差。着重研究了虚拟制造环境下基于球面铣刀弹性变形的曲面加工误差预报模型。研究并建立了球面铣刀加工复杂曲面的切削力模型和刀具弹性变形模型,在此基础上,分析了曲面生成机理,提出了利用曲面变形敏感系数建立刀具弹性变形对法向加工误差的影响关系。利用该模型可以在实际切削加工前对曲面加工误差进行预报,用以进行误差补偿或切削参数优化。最后,以二维半圆形拉伸曲面为例通过切削实验对本文提出的模型进行了验证。  相似文献   

16.
Chucking compliance compensation with a linear motor-driven tool system   总被引:2,自引:0,他引:2  
This paper describes a system that compensates for machining errors resulting from chucking with separated jaws. In machining a chucked cylindrical workpiece, degradation in machining accuracy, such as out-of-roundness, is inevitable due to variation in the radial compliance of the chuck workpiece system caused by the position of jaws with respect to the direction of the applied force. To compensate for the machining error induced by chucking compliance, the roundness profile of the workpiece due to chucking compliance after machining should be predicted first. Then, using this prediction profile, a compensating tool feed trajectory can be generated. By synchronizing the cutting tool drive system with the rotation of the workpiece, machining errors induced by chucking compliance can be reduced. To satisfy the condition that the cutting tool feed system must provide both high speed and high position accuracy, a brushless linear DC motor is used. In this study, first, the variation in the radial compliance of the chuck workpiece system is obtained through a force-deflection experiment with a workpiece-chucked lathe. Next, using mathematical equations and the results of the cutting experiment, a workpiece profile prediction and its compensating tool trajectory are generated. Then, the configuration of the compensation system based on a linear motor is described, and a proportional integral derivative (PID) controller is designed to improve the system performance. Finally, the tracking performance of the system is confirmed by experiment. A real cutting experiment shows significant improvement in roundness.  相似文献   

17.
热误差建模和补偿是提高机床加工精度的重要手段。 将得到的热误差模型应用到类似或相近任务中,对减少模型构建 和数据收集的成本具有重要意义。 本文提出了一种简易迁移学习(EasyTL)融合域内对齐的主轴热误差建模方法,以实现不同 工况下误差模型的迁移复用。 建立基于域内对齐和距离矩阵全组合择优的热误差迁移模型参数选取方法,获得最优组合。 进 一步分析不同类型的域内对齐和距离矩阵各自对模型迁移性能的影响。 最后,将迁移模型与 kNN 典型机器学习模型和卷积神 经网络深度模型进行比较验证,分别预测不同工况下主轴 Z 向和 Y 向的热误差。 此外,根据预测的主轴热误差进行工件补偿 加工实验。 该方法为热误差建模及补偿提供了一种新思路。  相似文献   

18.
In aerospace industry, thin-walled workpiece milling is a critical task. Also, the machining vibration is a major issue for the accuracy of the final part. In this study, a new dynamic analytical model is proposed to determine the effect of damping factor on the dynamic response of thin-walled workpiece in machining. A complex structure workpiece is equivalent to a thin plate. The fixture constrains and the damping factor are crucial elements of this thin plate. Therefore, the magnetorheological fluid flexible fixture is designed to suppress the machining vibration in machining process. Then, the general dynamic cutting force model and the damping force model are proposed for the key dynamic equation for the prediction of dynamic response to evaluate the stability of the milling process with and without the damping control. Finally, the feasibility and effectiveness of the proposed model is validated by machining tests. The predicted values match on the experiment results.  相似文献   

19.
During the machining process, cutting forces cause deformation of thin-walled parts and cutting tools because of their low rigidity. Such deformation can lead to undercut and may result in defective parts. Since there are various unexpected factors that affect cutting forces during the machining process, the error compensation of cutting force induced deformation is deemed to be a very difficult issue. In order to address this challenge, this article proposes a novel real time deformation error compensation method based on dynamic features. A dynamic feature model is established for the evaluation of feature rigidity as well as the association between geometric information and real time cutting force information. Then the deformations are calculated based on the dynamic feature model. Eventually, the machining error compensation for elastic deformation is realized based on Function Blocks. A thin-walled feature is used as an example to validate the proposed approach. Machining experiment results show that the errors of calculated deformation with the monitored deformation is less than 10%, and the thickness errors were between ?0.05 mm and +0.06 mm, which can well satisfy the accuracy requirement of structural parts by NC (Numerical Control) machining.  相似文献   

20.
An ice-clamping device holds workpieces by using the adhesive bond of frozen water. Demanding parts like micro pieces, complex geometries, or soft materials pose challenges in manufacturing processes, being hard to clamp during machining operations. By encapsulating a workpiece form and force-fitted, ice clamping introduces an innovative technique towards a flexible, deformation-reduced, damage-free, and sustainable fixture technology addressing as well the demands of green manufacturing. Due to the relative novelty, basic information about the technique’s capability are rare. To address the question of industrial applicability, the paper investigates influence factors, like reachable strengths in the presence of shear and tensile forces as well as torque, dynamic loads, the impact of workpiece materials, and the effect of process heat. The main findings of the proposed clamping technique are discussed with regard to a targeted use in common industrial machining operations like milling, drilling, or turning. A performance evaluation was executed by means of high-speed cutting operations, using, inter alia, a hard-to-clamp workpiece.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号