首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
This paper evaluates performance of a quarter-vehicle magneto-rheological (MR) suspension system with respect to different tire pressure. In order to achieve this goal, controllable MR damper that satisfies design specifications for a midsized commercial passenger vehicle is designed and manufactured based on the optimized damping force levels and mechanical dimensions. After experimentally evaluating the field-dependent characteristics of the manufactured MR damper, the quarter-vehicle suspension system consisting of sprung mass, spring, tire and the MR damper is constructed in order to investigate the ride comfort. After deriving the equations of the motion for the proposed quarter-vehicle MR suspension system, vertical tire stiffness with respect to different tire pressure is experimentally identified. The skyhook controller is then implemented for the realization of quarter-vehicle MR suspension system. Ride comfort characteristics such as vertical acceleration RMS (root mean square) and WRMS (weighted RMS) of sprung mass are evaluated under bump and random road conditions using a quarter-vehicle test facility.  相似文献   

2.
The control study of vehicle semi-active suspension with magneto-rheological (MR) dampers has been attracted much attention internationally. However, a simple, real time and easy implementing semi-active controller has not been proposed for the MR full-vehicle suspension system, and a systematic analysis method has not been established for evaluating the multi-objective suspension performances of MR full-vehicle vertical, pitch and roll motions. For this purpose, according to the 7-degree of freedom (DOF) fullvehicle dynamic system, a generalized 7-DOF MR and passive full-vehicle dynamic model is set up by employing the modified Boucwen hysteretic force-velocity (F-v) model of the MR damper. A semi-active controller is synthesized to realize independent control of the four MR quarter-vehicle sub-suspension systems in the full-vehicle, which is on the basis of the proposed modified skyhook damping scheme of MR quarter-vehicle sub-suspension system. The proposed controller can greatly simplify the controller design complexity of MR full-vehicle suspension and has merits of easy implementation in real application, wherein only absolute velocities of sprung and unsprung masses with reference to the road surface are required to measure in real time when the vehicle is moving. Furthermore, a systematic analysis method is established for evaluating the vertical, pitch and roll motion properties of both MR and passive full-vehicle suspensions in a more realistic road excitation manner, in which the harmonic, rounded pulse and real road measured random signals with delay time are employed as different road excitations inserted on the front and rear two wheels, by considering the distance between front and rear wheels in full-vehicle. The above excitations with different amplitudes are further employed as the road excitations inserted on left and right two wheels for evaluating the roll motion property. The multi-objective suspension performances of ride comfort and handling safety of the proposed MR full-vehicle suspensi  相似文献   

3.
A modified skyhook-based semi-active controller is proposed for implementing an asymmetric control suspension design with symmetric magneto-rheological (MR) dampers. The controller is formulated in current form, which is modulated by integrating a continuous modulation and an asymmetric damping force generation algorithms, so as to effectively minimize switching and hysteretic effects from the MR-damper. The proposed controller is implemented with a quarter-vehicle MR-suspension model, and its relative response characteristics are thus evaluated in terms of defined performance measures under varying amplitude harmonic, rounded pulse and random excitations. The sensitivity of the semi-active suspension performance to variations in controller parameters is thoroughly evaluated. The results illustrate that the proposed skyhook-based asymmetric semi-active MR-suspension controller has superior robustness on the system parameter variations, and can achieve desirable multi-objective suspension performance.  相似文献   

4.
A modified skyhook-based semi-active controller is proposed for implementing an asymmetric control suspension design with symmetric magneto-rheological (MR) dampers. The controller is formulated in current form, which is modulated by integrating a continuous modulation and an asymmetric damping force generation algorithms, so as to effectively minimize switching and hysteretic effects from the MR-damper. The proposed controller is implemented with a quarter-vehicle MR-suspension model, and its relative response characteristics are thus evaluated in terms of defined performance measures under varying amplitude harmonic, rounded pulse and random excitations. The sensitivity of the semi-active suspension performance to variations in controller parameters is thoroughly evaluated. The results illustrate that the proposed skyhook-based asymmetric semi-active MR-suspension controller has superior robustness on the system parameter variations, and can achieve desirable multi-objective suspension performance.  相似文献   

5.
MR阻尼器控制与滞环特性相分离的F-v模型   总被引:1,自引:0,他引:1  
提出了一种基于对称和不对称Sigmoid函数,描述半主动可控磁流变液(MR)阻尼器阻尼力—相对速度(F-v)数学模型。该模型准确地描述了MR阻尼器非线性饱和的直流电流控制和对称滞环F-v的工作特性,以及激励频率和幅度对阻尼力的强影响特性,具有精度高和电流控制增益与滞环算子相分离的特点。将该模型与车辆悬架动力学模型结合分析,仿真结果表明MR阻尼器对实现新一代智能车辆悬架系统设计有潜在的意义,所提出的模型对进一步推动车辆悬架减振控制器设计研究有重要作用。  相似文献   

6.
This paper presents a road-adaptive control law for semi-active vehicle suspensions. In semi-active suspensions, damping coefficients are controlled so as to make the actual damper force as close to the desired damper force as possible at any time instance. The proposed control law consists of a road-adaptive sky-hook damping algorithm and a Road Detection Algorithm (RDA). This approach leads to the sprung mass and unsprung mass velocity feedback control law with time varying gains. The gains are tuned by the RDA. To evaluate the performance enhancement brought about by the proposed control law, the performance of a semi-active suspension with the proposed control law is compared to those of the sky-hook controlled semi-active suspension and a passive suspension. The controller has been implemented experimentally on a quarter car test rig and a semi-active damper with a 19 damping rates has been used to generate the desired semi-active force. The proposed control law provides adequate damping for the wheel hop frequency and improved performance compared to that of the sky-hook control law.  相似文献   

7.
为了解决半主动悬架传统变论域模糊控制器过度依赖经验规则的问题,提出了一种基于模糊神经网络的变论域T-S模糊控制策略。首先,根据磁流变减振器阻尼特性的实验结果,建立基于自适应模糊神经网络的减振器阻尼力模型及1/2车辆半主动悬架动力学模型;其次,建立悬架系统T-S模糊控制器,同时为了实时调节T-S模糊控制器变量的论域,采用模糊神经网络结构描述伸缩因子的变化。仿真结果表明,笔者提出的变论域模糊控制策略能够有效提高车辆行驶平顺性和操作稳定性。  相似文献   

8.
冯勇  吴凯  刘梦安 《汽车零部件》2012,(5):50-54,69
选择了某微型汽车悬架的磁流变减震器为研究对象,运用汽车动力学理论建立了1/4汽车半主动悬架控制系统动力学模型,基于模糊PID控制算法设计了模糊PID控制器.车辆在不同路面输入谱和不同行驶速度下,以悬架的簧载质量加速度、悬架动挠度和轮胎动载荷3个基本参数来表征磁流变半主动悬架系统的振动特性,运用Matlab/Simulink软件对该悬架系统进行仿真研究,仿真结果表明,当汽车在不同等级的路面上行驶时,随着车速的提高,采用模糊PID控制半主动悬架汽车的簧载质量加速度和悬架动挠度的幅值相对于被动悬架均明显减小,表现出了良好的控制效果.轮胎动载荷与被动悬架的幅度大体相当,偶尔还比被动悬架幅值高,但综合来看,模糊PID控制器能更好地减小汽车振动,进一步提高汽车的乘坐舒适性.结果同时也说明了模糊PID控制具有很好的鲁棒性.采用磁流变减振器的半主动悬架系统有效地改善了汽车乘坐舒适性和操纵稳定性.  相似文献   

9.
GENERATION OF ASYMMETRIC F-v CHARACTERISTICS FOR SYMMETRIC MR DAMPERS   总被引:1,自引:0,他引:1  
An asymmetric damping force generation algorithm is originally proposed to yield the asymmetric force-velocity characteristics for the symmetric magneto-rheological (MR) dampers. The command current is formulated in an asymmetric manner to excite the symmetric MR dampers by employing the "on-off" control law in response to the direction of velocity, and a smooth modulation function is developed without phase shift to suppress strong transients in the damping forces caused by the current-switching discontinuity. The effectiveness of the proposed algorithm is evaluated by analyzing the dynamic responses of a quarter-vehicle suspension system with a symmetric MR-damper by modulating the command current into the asymmetric manner. The simulation results show that the proposed algorithm could achieve a better compromise between the conflicting requirements of the asymmetric damping force ratio and the force-velocity curve smoothness, and the asymmetric damping MR-suspension design can ideally improve the road holding and ride performances of vehicle motion. The proposed algorithm can be generally incorporated with a controller synthesis to realize an intelligent vehicle suspension design with the symmetric MR dampers.  相似文献   

10.
The design and analysis of an intelligent vehicle suspension with MR dampers should address hybrid semi-active control goals, such as rejection of current-switching discontinuity and MR-damper hysteresis, asymmetric damping from the symmetric MR-damper design, robustness on the vehicle operation parameter uncertainties and consideration of essential multiple suspension goals. Following the proposed skyhook-based asymmetric semi-active controller (Part Ⅰ) for achieving the above goals, herein, a set of suspension performance measures and three kinds of varying amplitude harmonic, rounded pulse and really measured random excitations are systematically defined, and the sensitivity of quarter-vehicle MR-suspension performance to variations in operating conditions is thoroughly analyzed. The results illustrate that the proposed skyhook-based semi-active MR-suspension in the asymmetric mode yields relatively superior dynamic responses to meet the multiple suspension performances of ride, rattle space, road-holding and dynamic tire force transmitted to the pavement, and has desirable robustness on variations in operating conditions of vehicle load and speed and the road roughness.  相似文献   

11.
建立了履带车辆1/2车体振动模型,设计了相应的滑移面和滑移模态控制器,得出了履带车辆半主动悬挂系统的实时控制阻尼力,并对路面激励下滑模控制与最优控制的减振效果进行了仿真。  相似文献   

12.
A novel intelligent semi-active control system for an eleven degrees of freedom passenger car’s suspension system using magnetorheological (MR) damper with neuro-fuzzy (NF) control strategy to enhance desired suspension performance is proposed. In comparison with earlier studies, an improvement in problem modeling is made. The proposed method consists of two parts: a fuzzy control strategy to establish an efficient controller to improve ride comfort and road handling (RCH) and an inverse mapping model to estimate the force needed for a semi-active damper. The fuzzy logic rules are extracted based on Sugeno inference engine. The inverse mapping model is based on an artificial neural network and incorporated into the fuzzy controller to enhance RCH. To verify the performance of the NF controller (NFC), comparisons with existing semi-active techniques are made. The typical control strategy are linear quadratic regulator (LQR) and linear quadratic Gaussian (LQG) controllers with clipped optimal control algorithm, while inherent time-delay and non-linear properties of MR damper lie in these strategies. Simulation results demonstrated that the NFC has better control performance and less control effort than the optimal in improving the service life of the suspension system and the ride comfort of a car.  相似文献   

13.
半主动悬架可以自适应调节阻尼器的阻尼力,具有良好的可控性.针对半主动悬架的增益故障,提出了基于自适应模糊控制的汽车半主动悬架容错控制.在分析汽车半主动悬架阻尼器输入输出特性的基础上,建立了阻尼器发生增益故障时的故障悬架模型,设计了未知输入观测器对阻尼器增益故障进行故障诊断.基于自适应模糊控制对汽车半主动悬架系统阻尼器增...  相似文献   

14.
为优化悬架减振性能和馈能性能,提出了一种馈能磁流变减振器结构,并设计了相应的半主动悬架模糊滑模控制策略。建立了磁流变减振器力学模型和馈能模型,以及相应的二自由度半主动悬架系统数学模型。针对半主动悬架系统的不确定性,基于混合天地棚阻尼控制系统,设计了滑模变结构控制器。使用饱和函数缓解系统抖振,并运用模糊控制优化滑模控制器。用谐波叠加法生成路面激励输入,分别对被动悬架、基于混合天地棚阻尼控制的半主动悬架以及基于模糊滑模控制的半主动悬架进行对比仿真。结果表明:基于模糊滑模控制的半主动悬架减振性能更好,能耗更小,且有良好的馈能性能,验证了馈能磁流变减振器结构的可行性和模糊滑模控制策略的有效性。  相似文献   

15.
设计了磁流变减振器磁芯磁路,建立了磁路的仿真模型,仿真研究了磁路的磁场特性,用实验的方法对仿真模型进行了验证和修正;在此基础上,建立了整个磁流变减振器的仿真模型,仿真研究了其磁场分布规律及不同参数下阻尼孔附近的磁通密度.研究结果表明,磁芯直径、工作缸壁厚、阻尼通道长度和线圈电流是影响磁场特性的主要因素,合理选择磁路结构参数可使其性能得到最大发挥.设计并制造出一种车辆单筒充气式磁流变减振器,对其进行了台架试验,得到不同电流下的减振器示功特性图,研究发现,通过调节减振器励磁线圈中的电流获得不同强度的磁场,在磁场作用下,磁流变液粘度发生变化,从而改变减振器的阻尼特性,减振器的饱和工作电流约为2A.试验验证了磁路设计的正确性,并为实现车辆磁流变半主动空气悬架控制研究奠定了基础.  相似文献   

16.
根据变论域方法对经典模糊控制算法进行了改进,提出了悬架阻尼力变论域模糊控制算法。根据悬架阻尼控制力与磁流变阻尼器输出阻尼力的力误差,设计了磁流变阻尼器驱动电流控制方法。由汽车结构振动模糊控制子系统和磁流变阻尼器驱动电流控制子系统构建了磁流变半主动悬架控制器,用模糊集语言赋值系数反映了悬架伸张行程和压缩行程不对称阻尼控制力的关系。利用二自由度车辆振动系统简化模型和磁流变阻尼器简化力学模型及其参数,确定了控制器结构及其参数。研究结果袁明,该方法具有较好的控制精度和适应能力。  相似文献   

17.
研制了一种新型的磁流变阻尼器 ,进行了阻尼器的阻尼特性试验。在性能试验的基础上 ,提出了描述磁流变阻尼器阻尼特性的非线性滞回模型。采用磁流变阻尼器实现车辆悬架系统半主动控制 ,提出一种基于最优控制理论的半主动控制方案 ,给出了悬架系统在B级公路路面激励下控制数值仿真结果。结果表明基于最优控制理论的半主动控制磁流变阻尼器有明显的控制效果 ,可以有效地提高车辆的乘坐舒适性 ,具有良好的应用前景。  相似文献   

18.
This study describes the development, modeling, and testing of a hybrid damper for semi-active suspension. The goal of this study is to improve the performance of conventional passive oil dampers using a magneto-rheological (MR) accumulator that consists of a gas accumulator and an MR device. The level of damping is continuously variable by means of control of the applied current in an MR device that is fitted to a floating piston that separates the gas and oil chamber. A small MR device is used to resist the movement of the floating piston. At first, a mathematical model that describes all flows within the damper is formulated and developed in Matlab/Simulink. The MR device is also devised. A mathematical model is adopted to characterize the performance of the device. The formulas derived for the different components of the damper force are combined into a full damper model. Then, the applicability of the MR device to a conventional passive oil damper is tested in a manufactured test environment and evaluated in terms of the damping force vs. the piston velocity. From the results, it is possible to ascertain the MF device’s capability to work as a damper that can supply a variable damping force. Moreover, this research affords a lot of new information about the applicability of MR devices and improvement of the damping force.  相似文献   

19.
A hardware-in-the-loop (HIL) test and simulation platform is developed in the laboratory, so as to validate the performance characteristics of the proposed skyhook-based asymmetric semi-active controller in Part I, and examine the validity of the proposed MR-damper model in a system surrounding. A real-time monitor is designed to assess and monitor the responses of the quarter-vehicle model in the HIL platform, and to select the excitation, controller synthesis, and the output displays. A drive current circuit hardware employing PID feedback technique is developed to compensate for the time delays from the servo-controller and drive current circuit, in which a small resistance is integrated in the current amplifier circuit to provide the feedback signal. The experiments were performed to measure the responses of the quarter-vehicle MR-suspension models with fixed current and the proposed semi-active MR-damping variations, under harmonic, rounded pulse and random road excitations. The measured data were compared with the corresponding model results to examine the model and controller validity, and revealed generally good agreements in the model and tested results and very little sensitivity of the tested responses to variations in the sprung mass. The HIL test results validate the effectiveness of the proposed skyhook-based semi-active asymmetric controller and its high robustness against the vehicle load variations in view of the intelligent vehicle suspension design.  相似文献   

20.
In this paper, we address the problem of designing the semiactive controller for a class of vehicle suspension system that employs a magnetorheological (MR) damper as the actuator. As the first step, an adequate model of the MR damper must be developed. Most of the models found in literature are based on the mechanical behavior of the device, with the Bingham and Bouc-Wen models being the most popular ones. These models can estimate the damping force of the device taking the control voltage and velocity inputs as variables. However, the inverse model, i.e., the model that computes the control variable (generally the voltage) is even more difficult to find due to the numerical complexity that implies the inverse of the nonlinear forward model. In our case, we develop a neural network being able to estimate the control voltage input to the MR damper, which is necessary for producing the optimal force predicted by the controller so as to reduce the vibrations. The controller is designed following the standard backstepping technique. The performance of the control system is evaluated by means of simulations in MATLAB/Simulink.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号