首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The target of taking advantage of the near-infrared light-emission properties of nickel ions in crystals for the design of novel broadband optical amplifiers requires the identification of suitable nanostructured glasses able to embed Ni-doped nanocrystals and to preserve the workability of a glass. Here we show that Ni doping of Li(2)O-Na(2)O-Ga(2)O(3)-GeO(2)-SiO(2) glass (with composition 7.5:2.5:20:35:35 and melting temperature 1480 °C, sensibly lower than in Ge-free silicates) enables the selective embedding of nickel ions in thermally grown nanocrystals of spinel-like gallium oxide. The analysis of transmission electron microscopy and x-ray diffraction data as a function of Ni-content (from 0.01 to 1 mol%) indicates that Ni ions promote the nanophase crystallization without affecting nanoparticle size (~6 nm) and concentration (~4 × 10(18) cm(-3)). Importantly, as shown by optical absorption spectra, all nickel ions enter into the nanophase, with a number of ions per nanocrystal that depends on the nanocrystal concentration and ranges from 1 to 10(2). Photoluminescence data indicate that fast non-radiative decay processes become relevant only at mean ion-ion distances shorter than 1.4 nm, which enables the incorporation of a few Ni ions per nanoparticle without too large a worsening of the light-emission efficiency. Indeed, at 0.1 mol% nickel, the room temperature quantum yield is 9%, with an effective bandwidth of 320 nm.  相似文献   

2.
Nano-glass-ceramics of composition 95SiO(2)-5SnO(2) doped with 0.4 Sm(3+) (mol%) were synthesized by the thermal treatment of precursor sol-gel glasses. Structural and luminescence measurements were carried out. The precipitated SnO(2) nanocrystals in the glass matrix constitute a wide bandgap quantum-dot system with size comparable to the bulk exciton Bohr radius. A site-selective excitation, by energy transfer from the semiconductor host, reveals that a fraction of the Sm(3+) ions are incorporated in the SnO(2) nanocrystals, whereas the rest remains in the silica glassy phase. An evolution in the Sm(3+) emission spectra has been observed when the SnO(2) nanocrystals are excited with different UV wavelengths, which has been ascribed to selective excitation of nanocrystal sets with predetermined size.  相似文献   

3.
In this work, we present the spectroscopic properties of KY3F10 nanocrystals activated with erbium and codoped with ytterbium ions. The most important processes that lead to the erbium upconversion of green and red emissions of Er3+ were identified. A time-resolved luminescence spectroscopy technique was employed to measure the luminescence decays of 4S3/2 and 4F9/2 excited levels of Er3+ and to determine the upconversion processes and the luminescence efficiencies of erbium in the visible. Analysis of the luminescence kinetics in Yb:Er:KY3F10 shows a rapid upconversion (Up1) for the green emission with a time constant of 0.31 μs after pulsed laser excitation at 972 nm for as synthesized nanocrystals, which is faster than the time constant measured for the bulk crystal (23 μs). In addition, it is observed a second upconversion process (non-resonant) (Up2) responsible for the red emission (Er3+), which competes with Up1 process. However, the luminescence efficiency of the green emission (4S3/2) is observed to be very low (1.6%) for the as synthesized nanocrystal (25 °C). Nevertheless, it increases with the nanopowder heat treatment reaching an efficiency of 99% (T = 550 °C) relative to the bulk crystal. Similar luminescence behavior was observed for the 4F9/2 level (Er3+) that emits red emission. X-ray diffraction analysis of nanopowder by Rietveld method reveled that the mean crystallite size remains unchanged (8.3–12.3 nm) after thermal treatments with T  400 °C, while the 4S3/2 luminescence efficiency strongly increases to 20%. The luminescence dynamics indicates that Er3+ ions distribution plays a determinant role in the luminescence efficiency of green and red emissions of Er3+ besides also the strong influence on the upconversions processes. The observed luminescence effect is caused by the non-uniform Er3+ (and Yb3+) ions distribution due to the nanocrystal grown, which introduces a concentration gradient that increases towards the nanoparticle surface. This concentration effect produces strong (Er × Er) cross-relaxations depleting the excited states populations of 4S3/2 and 4F9/2 levels and their luminescence efficiencies in KY3F10 nanocrystals. The concentration gradient is very accentuated in the as synthesized nanocrystal and gradually decreases with the thermal treatments where the dopant ions can migrate through the lattice towards the nanocrystal’s interior to get a more uniform and random distribution, which is reached after heat treatment to T = 550 °C.  相似文献   

4.
The optical and structural properties of 50P2O5:50BaO glasses prepared by melting have been investigated for additive concentrations of 10 and 1 mol% of CuO and SnO dopants. Absorption and photoluminescence spectroscopies were employed in the optical characterization, whereas structural properties were assessed by 31P nuclear magnetic resonance (NMR) spectroscopy. Residual Cu2+ was detectable by absorption spectroscopy for the highest concentration of CuO and SnO. More prominently, the optical data suggests contributions from both twofold-coordinated Sn centers and Cu+ ions to light absorption and emission in the glasses. The luminescence depends strongly on excitation wavelength for the highest concentration of dopants where a blue–white emission is observed under short-wavelength excitation (e.g., 260 nm) largely due to tin, while an orange luminescence is exhibited for longer excitation wavelengths (e.g., 360 nm) essentially due to Cu+ ions. On the other hand, dissimilar luminescent properties were observed in connection to Cu+ ions for the lowest concentration studied, as the copper ions were preferentially excited in a narrower range at shorter wavelengths near tin centers absorption. The structural analyses revealed the glass matrix to be composed essentially of Q2 (two bridging oxygens) and Q1 (one bridging oxygen) phosphate tetrahedra. A slight increase in the Q1/Q2 ratio reflected upon SnO doping alone suggests a major incorporation of tin into the glass network via P–O–Sn bonds, compatible with the 2-coordinated state attributed to the luminescent Sn centers. However, a significant increase in the Q1/Q2 ratio was indicated with the incorporation of copper at the highest concentration, consistent with a key role of the metal ions as network modifiers. Thus, the change in Cu+ optical properties concurs with different distributions of local environments around the ions induced by variation in metal ion concentration. Luminescence decay curve analyses were found in agreement with the presence of Cu+ ions in the glasses suggesting their existence in tetragonally-distorted octahedral sites.  相似文献   

5.
Sols of stabilized copper-doped CdSe nanocrystals in a nonpolar high-boiling solvent have been synthesized using cadmium oleate, copper stearate, and trioctylphosphine selenide as starting reagents. The average size of the nanocrystals is 2.8–2.9 nm, with a 10% variance, as evaluated from their absorption spectra. The samples show excitonic luminescence and bright near-IR (700–900 nm) luminescence with a lifetime on the order of 0.5–1 μs. The luminescence spectroscopy data are consistent with the assumption that the copper distribution over the nanocrystals follows Poisson’s law. The average copper content of the samples is 0.1–2 atoms per nanocrystal.  相似文献   

6.
为研究Cu掺入对SnO_2性能的影响,本文采用密度泛函理论和平面波赝势法,建立了未掺杂SnO_2和不同比例Cu掺杂的SnO_2晶胞模型,对Sn_(1-x)Cu_xO_2(x=0、0.083、0.125、0.167、0.25、0.5)超晶胞体系进行优化计算、能量计算和弹性模量计算,得到晶格常数、弹性模量、电荷分布、能带结构和态密度图.研究表明:掺杂能够使得材料的弹性模量大幅减小,对应的硬化函数值降低,易于材料加工;在电性质方面,掺杂后,材料均属于直接带隙半导体材料.当x0.25时,由于掺杂浓度过高使得晶格发生畸变,电性质与未掺杂情况类似;当x0.25时,随着掺杂浓度的降低,导带收缩加剧,局域性增强,禁带宽度变窄,使得电子从价带受激跃迁所需能量降低,故掺杂后材料表现出半金属性,导电性增强.  相似文献   

7.
Nanostructured silica based glass-ceramics samples of composition (100 - x)SiO2-xSnO2, with x from 1 to 10, have been synthesized by thermal treatment of precursor sol-gel glasses. The average size of the obtained SnO2 nanocrystals, calculated by using the X-ray diffraction, can be predetermined by using well-controlled concentration of tin precursor. The mean radius ranging from 1.6 to 5.5 nm, is comparable to the exciton Bohr radius, corresponding to wide band-gap semiconductor quantum-dots in an insulator SiO2 glass. A spectroscopy study in terms of optical absorption and photoluminescence spectra has been carried out as a function of SnO2 concentration. Size-dependent red-shifts of excitation and emission bands, with increasing of tin precursor concentration, point to the quantum confinement effect. The nanocrystal sizes have been obtained and compared by using the Brus and Scherrer equations. The band gap increase is in agreement with results, based on the effective mass model. The recombination of conduction band electron with oxygen vacancies is proposed to explain the luminescence red-shift.  相似文献   

8.
We report here fabrication of silver (0 to 1.76 mol%) doped PbS nanowires (radius r approximately 1.75 nm) in polymer by a simple wet chemical process. An X-ray photoelectron spectroscopy study clearly confirms the possibility of silver (Ag) doping in PbS nanowires. Both absorption and photoluminescence spectra reveal very strong quantum confinement effect in PbS nanowires as expected for a r/Bohr radius ratio approximately 0.0972 nm. Visible excitonic emission is observed at room temperature in the photoluminescence spectra of undoped and silver doped PbS nanowires in polymer. The excitonic emission is appreciably blue-shifted when doped by silver (1.76 mol%) indicating strong modification of the electronic states by magnetic silver ions. While Ag2+ centers at the substitutional lattice site show an emission band around 525 nm, Ag0 at the interstitial site act as nonradiative recombination centers. Effect of silver doping on the luminescence intensity is also discussed.  相似文献   

9.
In the present work, we have interested to understand the influence of cobalt doping on the various properties of ZnO nanoparticles, a series of samples were successfully synthesized using sol–gel auto-combustion method. The effects of Co doping on the structural and optical properties of ZnO:Co nanoparticles were investigated using X-ray diffraction (XRD), scanning electron microscopy, fourier transform infrared (FTIR) spectroscopy, ultraviolet–visible spectroscopy, photoluminescence spectroscopy and vibrating sample magnetometer (VSM). With the sensitivity of the XRD instrument, the structural analyses on the undoped and Co-doped ZnO samples reveal the formation of polycrystalline hexagonal-wurtzite structure without any secondary phase. FTIR spectra confirm the formation of wurtzite structure of ZnO in the samples. The optical absorption spectra showed a red shift in the near band edge which indicates that Co2+ successfully incorporated into the Zn2+ lattice sites. The room temperature PL measurements show a strong UV emission centered at 392 nm (3.16 eV), ascribed to the near-band-edge emissions of ZnO and defect related emissions at 411 nm (violet luminescence), 449 nm (blue luminescence) and 627 nm (orange-red luminescence), respectively. Magnetic study using VSM reveals that all the samples are found to exhibit room temperature ferromagnetism.  相似文献   

10.
This work presents the spectroscopic properties of trivalent samarium ions in a melt-quenched aluminophosphate glass containing silver and tin. Addition of 4 mol% of each Ag2O and SnO into the glass system with 2 mol% Sm2O3 results in Sm3+ ions luminescence under non-resonant UV excitation owing to energy transfer from single silver ions and/or twofold-coordinated Sn centers. Assessment of luminescence spectra and decay dynamics suggest the energy transfer mechanism to be essentially of the resonant radiative type. Moreover, a connection between the luminescent and structural properties of the rare-earth doped glass system was demonstrated. Raman spectroscopy characterization revealed that no significant variation in the glass matrix is induced by Sm3+ doping at the concentration employed. A comparison was made with a structural study performed on the Eu3+ doped system (containing 2 mol% Eu2O3 along with 4 mol% of each Ag2O and SnO) where the radiative energy transfer mechanism was previously established. The data appears consistent regarding the lack of variation in glass structure upon the Eu3+ and Sm3+ doping in connection with the dominance of the radiative transfer in the matrix. Thermal treatment of the material leads to precipitation of Ag nanoparticles of a broad size range inside the dielectric as observed by transmission electron microspcopy. Assessment of 4G5/2 excited state decay in Sm3+ ions shows no influence from the silver particles.  相似文献   

11.
The diffuse reflectance, photoexcitation, and luminescence spectra and luminescence decay time of CaS:Er3+ have been measured at 77 and 300 K and different activator contents. The absorption and luminescence bands due to Er3+ centers and native defects have been revealed, and the radiative electronic transitions between excited and ground Er3+ states have been identified. The characteristic decay times of the Er3+ 2 H 11/2 and 4 F 9/2 states in CaS have been determined, and radiative energy transfer from excited states of native defects to erbium ions in CaS:Er3+ has been revealed.  相似文献   

12.
采用溶胶-凝胶法制备铜掺杂的纳米二氧化钛颗粒。应用X射线衍射(XRD)、透射电子显微镜(TEM)、扫描透射电子显微镜(STEM)、X射线光电子能谱(XPS)和紫外-可见分光光度计(UV-Vis)技术对纳米二氧化钛颗粒的物相组成、平均晶粒尺寸、微观结构、化学态及光吸收性能进行表征。结果表明:Cu掺杂抑制TiO_2的相变,在650℃时Cu的氧化物CuO在TiO_2颗粒表面出现,掺杂的Cu离子以Cu^+的形式存在。掺杂Cu的TiO_2光吸收带边显著红移,随着Cu掺杂量的提高,样品光吸收度提高,随着温度的升高,样品紫外-可见光光谱吸收带边红移。  相似文献   

13.
Tin oxide nanoparticles ranging in average size from 12 to 315 nm have been prepared by levitation-jet aerosol synthesis through condensation of tin vapor in a flow of inert gases and oxygen (air). The nanoparticles have been characterized by transmission electron microscopy, X-ray diffraction, BET measurements, vibrating-sample magnetometry, and Raman scattering spectroscopy. The results indicate that the nanoparticles may exhibit room-temperature ferromagnetism, with their magnetization having a maximum at O: Sn = 1. The ferromagnetic order is tentatively attributed to the presence of localized states on the Sn/SnO and SnO/SnO2 interfaces.  相似文献   

14.
以2SnCl4·5H2O和SbCl3为原料,采用气-液界面法制备纳米ATO粉体,用粒度分析仪、X射线衍射仪、x射线光电子能谱仪及透射电子显微镜研究不同掺杂量下粉体组成、分布情况以及尺寸形貌;采用宽频介电阻抗谱仪测量不同掺杂比例样品的电性能,研究表明,采用气-液界面法制备的ATO纳米粉体粒径小、分布窄,掺杂剂分布均匀,表现出优异的电性能。当掺杂量为10At%时,所制备的粒径为10nm左右,表现出最佳的导电性能,电导率达到1.64×10-2S·cm-1。该制备方法对于其他复合纳米粉体的合成制备具有重大借鉴意义。  相似文献   

15.
Diluted magnetic CdS:Mn nanoparticles were synthesized by the aqueous solution method with different manganese (Mn2+) concentrations (x=7?C10?atom?%) at room temperature in nitrogen atmosphere and capped with Thiogelycerol. The X-ray diffraction patterns of CdS nanoparticles with different Mn doping concentration indicated that samples have hexagonal structure at room temperature. Energy dispersive X-ray spectroscopy confirmed incorporative of Mn ions in CdS nanoparticles. UV-Visible spectroscopy is used to investigate optical absorption of Mn-doped CdS. From photoluminescence measurement it was found that the intensity of the luminescence spectra decreases by increasing Mn2+ dopant ions at high precursor concentration. Also, the room temperature ferromagnetic behavior of Mn-doped CdS nanoparticles is discussed by using hysteresis measurement results.  相似文献   

16.
Wan Y  Liu J  Li W  Meng F  Jin Z  Yu X  Huang X  Liu J 《Nanotechnology》2011,22(31):315501
A plasma-assisted strategy for densely doping indium to SnO(2) nanostructures for gas-sensing applications is reported. The morphology, structure, and composition of the as-prepared nanostructures were characterized by field emission scanning electronic microscopy (FESEM), transmission electron microscopy (TEM), x-ray diffraction (XRD), and x-ray photoelectron spectrometry (XPS), respectively. The results show that the densities of hydroxyl and carboxyl groups of the coral-like SnO(2)/carbonaceous nanocomposites are remarkably improved by using a plasma treatment (PT), which enables them to adsorb a large quantity of indium ions and thereby enhance the doping. In gas-sensing measurements, it is found that the sensor is sensitive to chlorobenzene with a high response and short response and recovery times. Besides, the gas-sensing properties of the sensor based on the In-doped SnO(2) with PT are greatly improved compared with sensors based on In-doped SnO(2) without PT and pure SnO(2). The enhanced doping and the special coral-like structure are demonstrated as the mechanism of improvement. The kinetic processes of gas adsorption and desorption are also investigated. Furthermore, it is revealed that chlorobenzene can be clearly identified from some gas references by using principal component analysis, exhibiting a good selectivity. Our findings not only provide a promising building block for developing a sensitive and selective gas sensor for environmental monitoring, but also demonstrate a novel plasma-assisted strategy which could be potentially developed as a general method for dense doping of nanomaterials.  相似文献   

17.
Silver-doped aluminophosphate glasses were prepared by the melt-quenching technique in which silver nanoparticles (NP) of different sizes were embedded upon heat treatment. Optical absorption and photoluminescence spectroscopy were used to study the optical properties of the material before and after thermal processing. Photoluminescence (PL) experiments revealed a broadband emission observed around 420 nm for the non-heat treated samples with a luminescence decay showing a bi-exponential behavior. Temperature dependence PL studies showed a thermal quenching effect on the broadband emission. Our data suggests that the emission is due to single Ag+ ions. Optical absorption measurements performed on the heat treated samples allowed for particle size estimation and the evaluation of the thermal stability of the glass system and its attributes as a host for NP inclusion. The nanocomposite showed a dip in the broadband emission of silver ions ascribed to absorption of Ag+ ions luminescence by surface plasmons in the silver particles.  相似文献   

18.
Ga-doped ZnO (GZO) nanocrystals were synthesized via the hot-injection method for the first time. The characterizations of its structure, composition, morphology, and absorption properties were conducted by using powder X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM) and UV-vis absorption spectroscopy. The results indicated that GZO nanocrystals were single phase polycrystalline within a range of 5―10 nm. Optical measurements illustrated that GZO nanocrystals have a tunable band gap from 3.35 to 3.81 eV, depending on the Ga doping level. GZO nanocrystals were dispersed in nonpolar solvents to form a nanocrystal ink which could remain stable after a month of storage. The GZO thin film was fabricated by spin coating the GZO nanocrystal ink and annealing in air. The electrical resistivity of the film was measured to be 7.5 × 10−2 Ω cm. This method, which eliminated the requirement of high vacuum and high temperature, was a promising alternative for transparent conducting oxide (TCO) fabrication.  相似文献   

19.
We investigated the effects of doping tin oxide thin film transistors (TFTs) with Ga, In, and Hf. The quantity of doping impurities added to the SnO2-TFT channel layer was as follows: Ga (6.3-21.4 at.%), In (9.6-55.6 at.%), and Hf (1.2-2.7 at.%). Hafnium and gallium doping of SnO2 thin film decreased the carrier concentration, possibly due to a decrease in field effect mobility, and reduced oxygen vacancy-related defects. Indium-doped SnO2-TFTs exhibited high performance with a high field-effect mobility of > 20 cm2 V(-1) s(-1). The current on/off ratio and the subthreshold swing of In-doped SnO2-TFTs was 1 x 10(9) and 0.5 V/decade, respectively. These results demonstrate that Ga, In, and Hf doping can effectively enhance the performance of SnO2-based TFT devices.  相似文献   

20.
采用固相法在500℃下成功制备Zn2+掺杂BiOCl:Eu3+层状半导体, 并研究了Zn2+ (0~20mol%)掺杂对Eu3+激活BiOCl层状半导体发光性能的影响。利用X射线衍射(XRD)、X射线光电子能谱(XPS)、扫描电镜(SEM)、傅里叶变换红外光谱(FT-IR)、激发-发射光谱、荧光寿命衰减曲线对样品的结构和性能进行表征。研究发现, 随Zn2+掺杂浓度增大, BiOCl晶体结构不变, Eu3+荧光寿命延长, 但发光强度却出现先减后增的反常现象。综合分析表明这可能与BiOCl特殊的层状结构有关。通过XRD和XPS的表征可以推断: 当Zn2+掺杂浓度≤10mol%, Zn2+在BiOCl中掺杂方式以晶胞层间隙掺杂为主; 当Zn2+掺杂浓度>10mol%后, 掺杂方式逐渐向取代掺杂转变。两种掺杂机制对Eu3+荧光寿命的改变以及形成缺陷对基质能量传递效率的影响可能是形成上述反常现象的主要原因。研究结果有助于认识稀土掺杂层状半导体的发光性能及影响规律, 并对Eu3+掺杂BiOCl这类新型发光材料的开发设计具有指导意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号