共查询到20条相似文献,搜索用时 15 毫秒
1.
The deformations of single-walled carbon nanotubes (SWCNTs) under large axial strains are investigated. The Tersoff-Brenner potential is adopted to describe the interactions between carbon atoms. Results show that the changes of strain energies are dependent on chirality but independent of the tubes' radii. Under large axial tension, abrupt changes of the configurations of SWCNTs may occur when the strains exceed 0.382 for armchair patterns and 0.43 for zigzag patterns. The reason is that the changes of bond lengths and angles lead to corresponding changes of many-body coupling interactions between atoms. Then the tubes reach new equilibrium states. Such abrupt changes of configurations must trigger fracture of CNTs in a dynamic deformation. 相似文献
2.
Cutting single-walled carbon nanotubes 总被引:3,自引:0,他引:3
Ziegler KJ Gu Z Shaver J Chen Z Flor EL Schmidt DJ Chan C Hauge RH Smalley RE 《Nanotechnology》2005,16(7):S539-S544
A two-step process is utilized for cutting single-walled carbon nanotubes (SWNTs). The first step requires the breakage of carbon-carbon bonds in the lattice while the second step is aimed at etching at these damage sites to create short, cut nanotubes. To achieve monodisperse lengths from any cutting strategy requires control of both steps. Room-temperature piranha and ammonium persulfate solutions have shown the ability to exploit the damage sites and etch SWNTs in a controlled manner. Despite the aggressive nature of these oxidizing solutions, the etch rate for SWNTs is relatively slow and almost no new sidewall damage is introduced. Carbon-carbon bond breakage can be introduced through fluorination to ~C(2)F, and subsequent etching using piranha solutions has been shown to be very effective in cutting nanotubes. The final average length of the nanotubes is approximately?100?nm with carbon yields as high as 70-80%. 相似文献
3.
We report a simple fabrication method of creating a three-dimensional single-walled carbon nanotube (CNT) architecture in which suspended CNTs are aligned parallel to each other along the conventionally unused third dimension at lithographically defined locations. Combining top-down lithography with the bottom-up block copolymer self-assembly technique and utilizing the excellent film forming capability of polymeric materials, highly uniform catalyst nanoparticles with an average size of 2.0 nm have been deposited on sidewalls for generating CNTs with 1 nm diameter. This three-dimensional platform is useful for fundamental studies as well as technological exploration. The fabrication method described herein is applicable for the synthesis of other very small 1D nanomaterials using the catalytic vapor deposition technique. 相似文献
4.
Optically active single-walled carbon nanotubes 总被引:1,自引:0,他引:1
Peng X Komatsu N Bhattacharya S Shimawaki T Aonuma S Kimura T Osuka A 《Nature nanotechnology》2007,2(6):361-365
The optical, electrical and mechanical properties of single-walled carbon nanotubes (SWNTs) are largely determined by their structures, and bulk availability of uniform materials is vital for extending their technological applications. Since they were first prepared, much effort has been directed toward selective synthesis and separation of SWNTs with specific structures. As-prepared samples of chiral SWNTs contain equal amounts of left- and right-handed helical structures, but little attention has been paid to the separation of these non-superimposable mirror image forms, known as optical isomers. Here, we show that optically active SWNT samples can be obtained by preferentially extracting either right- or left-handed SWNTs from a commercial sample. Chiral 'gable-type' diporphyrin molecules bind with different affinities to the left- and right-handed helical nanotube isomers to form complexes with unequal stabilities that can be readily separated. Significantly, the diporphyrins can be liberated from the complexes afterwards, to provide optically enriched SWNTs. 相似文献
5.
We report an improved, elegant method for the covalent formylation of single-wall carbon nanotubes (SWNTs) via formyl transfer from N-formylpiperidine, which could potentially open the gateway for more versatile chemical modification of carbon nanotube (CNT) walls than is possible via other reported functionalisation methods. The formylation reaction does not inflict damage upon the pristine CNT structure, unlike the currently commonly used carboxylation route, and involves much fewer steps, and takes considerably less time, than most other reported routes. The modified SWNTs have been characterised by Raman spectroscopy, ultraviolet-visible-near infrared (UV-vis-NIR) spectroscopy and "covalent tagging" with derivatising groups followed by thermogravimetric analysis-mass spectroscopy (TGA-MS). UV-vis-NIR spectroscopy shows that there is only limited disruption of the intrinsic electronic structure of the SWNTs. This is confirmed from estimates of the extent of functionalisation from TGA-MS, which suggest that it may be as low as 2 atomic per cent. 相似文献
6.
The discovery of carbon nanotubes (CNTs) created much excitement and stimulated extensive research into the properties of nanometer-scale cylindrical networks. From then on, various methods for the synthesis and characterization of aligned CNTs-both single-walled (SWCNTs) and multi-walled (MWCNTs) by different methods have been hotly pursued. Unfortunately, most methods currently in use produce raw multi component solid products, only a small fraction of which contains carbon nanotubes. The balance of the material is composed of residual catalyst particles (some of which are encased in concentric graphitic shells), fullerenes, other graphitic materials and amorphous carbon. These impurities cause a serious impediment for their detailed characterization and applications. If the carbon nanotube is ever to fulfill its promise as an engineering material, large, high quality aliquots will be required. A number of purification methods involving elimination processes such as physical separation, gas phase and liquid phase oxidation in combination with chemical treatments have been developed for nanotube materials. Though the quantitative determination of purity remains controversial, reported yields are best regarded with an appropriate level of skepticism on the method of assay. In this article, a review is given on the past and recent advances in purification of SWCNTs. 相似文献
7.
We extend previous ab initio calculations on excitonic effects in metallic single-walled carbon nanotubes to more experimentally realizable larger diameter tubes. Our calculations predict bound exciton states in both the (10,10) and (12,0) tubes with binding energies of approximately 50 meV providing experimentally verifiable changes to the absorption line shape in each case. The second and third van Hove singularities in the joint density of states also give rise to a single optically active bound or resonant excitonic state. 相似文献
8.
McDonald TJ Svedruzic D Kim YH Blackburn JL Zhang SB King PW Heben MJ 《Nano letters》2007,7(11):3528-3534
Many envision a future where hydrogen is the centerpiece of a sustainable, carbon-free energy supply. For example, the energy in sunlight may be stored by splitting water into H2 and O2 using inorganic semiconductors and photoelectrochemical approaches or with artificial photosynthetic systems that seek to mimic the light absorption, energy transfer, electron transfer, and redox catalysis that occurs in green plants. Unfortunately, large scale deployment of artificial water-splitting technologies may be impeded by the need for the large amounts of precious metals required to catalyze the multielectron water-splitting reactions. Nature provides a variety of microbes that can activate the dihydrogen bond through the catalytic activity of [NiFe] and [FeFe] hydrogenases, and photobiological approaches to water splitting have been advanced. One may also consider a biohybrid approach; however, it is difficult to interface these sensitive, metalloenzymes to other materials and systems. Here we show that surfactant-suspended carbon single-walled nanotubes (SWNTs) spontaneously self-assemble with [FeFe] hydrogenases in solution to form catalytically active biohybrids. Photoluminescence excitation and Raman spectroscopy studies show that SWNTs act as molecular wires to make electrical contact to the biocatalytic region of hydrogenase. Hydrogenase mediates electron injection into nanotubes having appropriately positioned lowest occupied molecular orbital levels when the H2 partial pressure is varied. The hydrogenase is strongly attached to the SWNTs, so mass transport effects are eliminated and the absolute potential of the electronic levels of the nanotubes can be unambiguously measured. Our findings reveal new nanotube physics and represent the first example of "wiring-up" an hydrogenase with another nanoscale material. This latter advance offers a nonprecious metal route to the design of new biohybrid architectures and building blocks for hydrogen-related technologies. 相似文献
9.
The dynamical conductance of electrically contacted single-walled carbon nanotubes is measured from dc to 10 GHz as a function of source-drain voltage in both the low-field and high-field limits. The ac conductance of the nanotube itself is found to be equal to the dc conductance over the frequency range studied for tubes in both the ballistic and diffusive limit. This clearly demonstrates that nanotubes can carry high-frequency currents at least as well as dc currents over a wide range of operating conditions. Although a detailed theoretical explanation is still lacking, we present a phenomenological model of the ac impedance of a carbon nanotube in the presence of scattering that is consistent with these results. 相似文献
10.
We present continuous wave photoinduced absorption spectroscopy of single-walled carbon nanotubes dispersed in a polymer matrix. The spectrum is dominated by a modulation of the absorption line shape, predominantly of large diameter tubes, that we assigned to electroabsorption caused by local electric fields arising from trapped photoinduced charges. The lack of selectivity in the excitation points to an efficient migration of the photoexcited states, either the singlet excitons or the charges resulting from their dissociation. 相似文献
11.
We report vertical electronic transitions of 20 metallic single-walled carbon nanotubes calculated as band energy differences from Kohn-Sham density functional theory. Our first-order transitions (E11) calculated with hybrid functionals (containing a portion of exact exchange) are in very good agreement with available experimental data. Recently, we have reported similar agreement between experiment and theory for semiconducting tubes. We find that the trigonal warping splitting in the band structure of metallic tubes is about 1.5 to 2 times larger than that reported previously. 相似文献
12.
Lim YS Yee KJ Kim JH Hároz EH Shaver J Kono J Doorn SK Hauge RH Smalley RE 《Nano letters》2006,6(12):2696-2700
We have generated and detected coherent lattice vibrations in single-walled carbon nanotubes corresponding to the radial breathing mode (RBM) using ultrashort laser pulses. Because the band gap is a function of diameter, these RBM-induced diameter oscillations cause ultrafast band gap oscillations, thereby modulating the interband excitonic resonances at the phonon frequencies (3-9 THz). Excitation spectra show a large number of pronounced peaks, allowing the determination of the chiralities present in particular samples and relative population differences of particular chiralities between samples. 相似文献
13.
Polarized photoluminescence excitation spectroscopy on individual SWNTs reveals not only the longitudinal and transverse E 11, E 22, and E 12 ground-state excitons but also excited excitonic states including the continuum. When heated, SWNTs are known to undergo a bandgap shift transition (BST), which effectively changes the nanotube dielectric environment. Here, we show that the entire spectrum of excitonic resonances blue shifts under this transition, with excited states showing larger shifts, approaching 100 meV for a 1 nm diameter nanotube. The excitonic binding energy, Coulomb self-energy correction, and dielectric shift under the BST are estimated. Analysis of this blue shift reveals the dominant effect of dielectric screening on SWNT excitonic states. 相似文献
14.
流体排布法是实现碳纳米管定向排列的一种简单的方法。采用流体排布法在具有浸润性图案化的基底上成功地对单壁碳纳米管(SWNTs)束进行了水平方向上的排布。将SWNTs悬浮液滴入光刻胶制成的微通道中,在流体剪切力作用下,弯曲的SWNTs在一定程度上会被拉伸并且平行地排列在纳米级宽度的微通道中。将排列好的SWNTs阵列转移到一些不同间距的金电极对上面,制作成碳纳米管场效应晶体管(CNTFET)。CNTFET的电性能测试结果表明,制备的SWNTs束可以制造出不同电极间距同时具有良好电性能的CNTFET。 相似文献
15.
Ming Zang 《Nanotechnology, IEEE Transactions on》2005,4(4):452-459
In this paper, a curvilinear coordinate system is used in space and in k-space to study the energy band of single-walled carbon nanotubes wrapped at a helical angle. Using this method, a general function of the bandgap associated with the radius of the tube and the helical angle is derived based on the tight-binding theory. The three-dimensional hexagonal Brillouin zone of the tube is on the surface of cylinder in the k-space. For two tubes with different diameters, there is a distance between the cylindrical Brillouin zones in the radial direction. The Brillouin zone varies with the radius of the tube and the number of cells on the circumference. For the metallic zigzag tubes, the bandgaps decrease discretely to zero at the corners of the Brillouin zones, and those corners are singular points of zero gaps. With the transformation of coordinates, the metallic zigzag type is proven to be equivalent to an armchair configuration. Electrical characteristics of the chiral effects are briefly highlighted. 相似文献
16.
Room temperature ozonolysis of fluorinated SWNT and phenyl-sulfonated SWNT have been studied in perfluoropolyether (PFPE) solvents. Etching at the end caps (approximately 70 nm/hour for fluorinated SWNT/PFPE suspension with 1 g/l concentration) has been demonstrated to be the dominating effect during the ozonolysis of fluorinated SWNT. Base on characterization by AFM analysis, X-ray Photoelectron Spectroscopy (XPS) and Raman Spectroscopy, fluorination along the SWNT sidewalls protects F-SWNT from extensive functionalization by ozonolysis. An ozone reaction with fluorinated SWNT has been found to improve its solubility in 96% sulfuric acid. This allows oxidative cutting by ammonium peroxydisulfate without defluorination. In comparison to fluorinated SWNT, phenyl-sulfonated SWNT was found to be effectively and homogeneous cut by ozonolysis in a water suspension. 相似文献
17.
Ziegler KJ Schmidt DJ Rauwald U Shah KN Flor EL Hauge RH Smalley RE 《Nano letters》2005,5(12):2355-2359
A two-phase liquid-liquid extraction process is presented which is capable of extracting water-soluble single-walled carbon nanotubes into an organic phase. The extraction utilizes electrostatic interactions between a common phase transfer agent and the sidewall functional groups on the nanotubes. Large length-dependent van der Waals forces for nanotubes allow the ability to control the length of nanotubes extracted into the organic phase as demonstrated by atomic force microscopy. 相似文献
18.
Continued growth of single-walled carbon nanotubes 总被引:1,自引:0,他引:1
Wang Y Kim MJ Shan H Kittrell C Fan H Ericson LM Hwang WF Arepalli S Hauge RH Smalley RE 《Nano letters》2005,5(6):997-1002
We demonstrate the continued growth of single-walled carbon nanotubes (SWNTs) from ordered arrays of open-ended SWNTs in a way analogous to epitaxy. Nanometer-sized metal catalysts were docked to the SWNT open ends and subsequently activated to restart growth. SWNTs thus grown inherit the diameters and chirality from the seeded SWNTs, as indicated by the closely matched frequencies of Raman radial breathing modes before and after the growth. 相似文献
19.
Progress towards monodisperse single-walled carbon nanotubes 总被引:1,自引:0,他引:1
Hersam MC 《Nature nanotechnology》2008,3(7):387-394
The defining characteristic of a nanomaterial is that its properties vary as a function of its size. This size dependence can be clearly observed in single-walled carbon nanotubes, where changes in structure at the atomic scale can modify the electronic and optical properties of these materials in a discontinuous manner (for example, changing metallic nanotubes to semiconducting nanotubes and vice versa). However, as most practical technologies require predictable and uniform performance, researchers have been aggressively seeking strategies for preparing samples of single-walled carbon nanotubes with well-defined diameters, lengths, chiralities and electronic properties (that is, uniformly metallic or uniformly semiconducting). This review highlights post-synthetic approaches for sorting single-walled carbon nanotubes - including selective chemistry, electrical breakdown, dielectrophoresis, chromatography and ultracentrifugation - and progress towards selective growth of monodisperse samples. 相似文献
20.
Gomez-Rojas L Bhattacharyya S Mendoza E Cox DC Rosolen JM Silva SR 《Nano letters》2007,7(9):2672-2675
We present for the first time an in-depth study of the RF response of a single-walled carbon nanotube (SWCNT) rope. Our novel electrode design, based on a tapered coplanar approach, allows for single tube measurements well into the GHz regime, minimizing substrate-related parasitics. From the analysis of the S-parameters, the ac transport mechanism in the range 30 kHz to 6 GHz is established. This work is an essential prerequisite for the fabrication of high-speed devices based on bundles of nanowires or low-dimensional structures. 相似文献