首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 78 毫秒
1.
液相沉积法制备磁性纳米Fe3O4/SiO2复合粒子   总被引:3,自引:0,他引:3  
采用液相沉积法在磁性Fe3O4纳米粒子的表面包覆了一层SiO2膜,制备磁性较强的纳米Fe3O4/SiO2复合粒子,采用IR、XPS、XRD、TEM、VSM等方法对复合粒子的性能进行了表征。结果表明:复合粒子的较佳制备条件为正硅酸乙酯(TEOS)的浓度为0.6mol/L,Fe3O4与TEOS物质的数量比为5:1,反应温度为50℃,搅拌速度为800r/min;在此条件下制得的复合粒子的粒径在20nm左右,比饱和磁化强度为60.5emu/g,呈球形且分散均匀。  相似文献   

2.
用溶胶-凝胶法制备纳米Fe2O3粉体并与环氧树脂/胺复合,通过XRD、TEM测定了纳米Fe2O3粉体的物相和粒径。结果表明,粉体均为α-Fe2O3的刚玉结构,平均晶粒度为27.7nm。分析了复合过程中引发剂乙二胺用量对Fe2O3-环氧树脂/胺复合材料的影响,并探讨了该纳米复合材料的磁性以及在水和生理盐水中的溶解情况及温度对它的影响。  相似文献   

3.
采用溶胶-凝胶法制备了纳米CuS-Fe2O3复合薄膜,研究了其微结构和摩擦学性能,并探讨了复合薄膜的磨损机制。用XRD,XPS,及AFM研究了薄膜的晶体结构、化学价态与表面形貌,用UMT-2研究了薄膜的摩擦学性能。研究结果表明,所制备的薄膜是均匀致密的,表面粗糙度为0.30 nm,CuS为粒径20 nm的正六面体结构,并且均匀分散在Fe2O3基体中;薄膜与GCr15不锈钢球对磨过程中表现出了很好的耐磨抗摩性能。CuS的摩尔分数为8%时的CuS-Fe2O3复合膜在滑动速度为150 mm/m in,载荷为1.5 N的条件下,摩擦因数为0.08,磨损寿命为4 200次,通过SEM观察薄膜的膜痕发现薄膜的磨损机制主要是轻微的擦伤、粘着转移和磨粒磨损。  相似文献   

4.
将La2O3纳米颗粒添加到氨基磺酸镍镀液中采用电沉积方法制备Ni-La2O3纳米复合镀层,研究了多种因素对复合镀层中La2O3含量的影响,分析了复合镀层的表面形貌和显微硬度。结果表明:试验条件下最佳工艺为电流密度2A/dm^2、镀液温度50℃、搅拌速度800r/min、镀液中La2O3含量30g/L;与纯镍镀层相比,复合镀层表面平整光滑、组织致密均匀;其显微硬度也高于纯镍镀层,并随着复合镀层中La2O3含量的增加而升高。  相似文献   

5.
采用磁性Fe_3O_4纳米颗粒为磁核,用反相悬浮聚合法制备了磁性壳聚糖复合微球,用激光粒度仪和透射电镜对磁性壳聚糖微球的尺寸和形貌进行分析,考察了壳聚糖浓度、乳化剂用量、交联剂浓度、搅拌速度等参数对壳聚糖成球的影响。结果表明:使用4 mL质量浓度为4 g·L~(-1)壳聚糖溶液、0.1 mL司本-80和0.1 mg磁性Fe_3O_4纳米颗粒,经超声分散1 h后,加入0.5 mL4%的戊二醛,在转速350 r·min~(-1)搅拌条件下,室温下反应2 h,可得到形貌光滑、粒径为0.5~2 μm的磁性壳聚糖复合微球,该壳聚糖复合微球具有较好的磁响应性能。  相似文献   

6.
采用化学共沉淀法,成功制备了纳米Fe3O4微粒,主要研究了Fe2+与Fe3+不同物质的量比对Fe3O4微粒、粒径及磁化强度的影响,采用不同表面活性剂制备了硅油基纳米Fe3O4磁性液体。结果表明:Fe2+与Fe3+物质的量比对Fe3O4微粒性能影响显著,对微粒尺寸影响不大,均为纳米级,当Fe2+与Fe3+物质的量比为0.6时,其饱和磁化强度达到最大,为52.1 A.m2.kg-1;在无水乙醇中,聚乙烯吡咯烷酮(PVP)的分散效果虽优于油酸,但与硅油相溶性差、增粘作用明显的缺点限制了PVP的使用;而油酸由于亲油性好,更适合作为制备硅油基Fe3O4磁性液体的表面活性剂。  相似文献   

7.
在常温常压、不添加任何催化剂的条件下,用电子束辐照法制备出纳米Fe3O4颗粒;通过X射线衍射仪、透射电子显微镜、紫外可见分光光度计以及激光粒度仪等对辐照后产物的结构、形貌、粒径、光学特性以及分散性能进行了表征。结果表明:经辐照后纳米Fe3O4颗粒以球形为主,通过谢乐公式计算出的纳米颗粒尺寸在20nm左右;采用复合分散剂聚仙梨醇、六偏磷酸钠和柠檬酸铵对纳米颗粒进行分散效果最佳,所得纳米颗粒粒径在8~18nm之间。  相似文献   

8.
采用化学共沉淀法制备Fe3O4磁性粉体,采用球磨分散法将磁性粉体分散于水溶液中,制得稳定分散的纳米Fe3O4磁性液体。实验中用十六烷基三甲基溴化铵(CTAB)对纳米粉体进行表面处理和分散,主要研究球磨时间、溶液pH值和表面活性剂的用量对Fe3O4磁性液体稳定性的影响,从理论上对纳米粒子在水溶液中的分散稳定性进行了分析。结果表明:球磨时间、分散剂种类和用量以及溶液的pH值对磁性液体的稳定性有很重要的影响;在酸性条件下,球磨时间为4~5 h,十六烷基三甲基溴化铵用量为Fe3O4粉体用量的8%时,制得的磁性液体分散稳定性效果较好;表面活性剂在粒子表面起到了保护作用,抑制了粒子团聚长大,同时在溶液中还起到了分散作用,使得磁性液体具有较好的稳定性。  相似文献   

9.
10.
以NH4 HCO3为沉淀剂、CuSO4和NH4Al(SO4)2为母液,采用共沉淀法制备CuO/Al2O3复合粉体,用激光粒度分析仪、扫描电镜、X射线衍射仪等研究了母液浓度、沉淀剂浓度、反应温度、pH值等工艺条件对粒径和粒度分布的影响.结果表明:通过控制反应条件,可获得粉体粒径较小、分布较窄的纳米CuO/Al2O3复合粉体;最佳工艺参数为反应温度55℃,pH值为7,CuSO4浓度为0.095 mol/L,NH4Al(SO4)2质量浓度为1.67 g/L,NH4HCO3浓度为1.52 mol/L,得到的纳米复合粉体的粒径在60 nm左右.  相似文献   

11.
磁致驱动人工肌肉用Fe_3O_4纳米粉的制备及表征   总被引:1,自引:1,他引:0  
采用化学共沉淀法制备了用于磁致驱动人工肌肉的Fe3O4纳米粉,经正交试验得到了最佳制备工艺参数,用XRD、TEM及振动样品磁强计等对其进行了表征。结果表明:产物平均粒径为9.7nm,饱和磁化强度为60.9A·m^2·kg^-1,具有超顺磁性;用Fe3O4纳米粉制备的磁致驱动人工肌肉的表面比用分析纯Fe3O4制备的表面更加平滑、颗粒分布更趋均匀。  相似文献   

12.
纳米磁性液体的制备和性能   总被引:3,自引:0,他引:3  
用化学沉淀法制备的Fe3O4微粒经表面活性剂包覆后,悬浮于水载液中得到了磁性液体,研究了水基磁性液体的制备工艺和性能。用扫描电镜对磁性颗粒在水中的分散情况进行了观测,用XRD对磁性颗粒的物相进行了分析,用振动磁场测定仪测定了磁性液体的饱和磁感应强度。结果表明:通过选用理想的表面活性剂,制备出的水基磁性液体饱和磁感应强度达到15.51Gs,矫顽力和剩磁均趋于零,磁性颗粒是标准的Fe3O4纳米颗粒,粒径为13.30nm。  相似文献   

13.
悬浮共聚合法制备核壳结构的墨粉   总被引:1,自引:0,他引:1  
分别用微乳液聚合法和悬浮聚合法合成了具有以Fe3O4微粉为核的核壳结构的墨粉微粒.探索了Fe3O4的颗粒大小以及两种不同的聚合方法对墨粉形貌的影响;采用SEM、粒度分析仪对核壳结构的墨粉形态进行了表征.结果表明,微乳液聚合法制备的核壳结构的墨粉在粒度分布以及粒子形貌方面基本达到了商用墨粉的要求.而悬浮聚合得到的是粒径分布很宽的不规则颗粒.  相似文献   

14.
针对传统Fe2O3气敏元件工作温度高、响应时间长等缺点,采用分析纯FeCl3·6H2O和乙醇为主要原料,以AI2O3陶瓷片为基底,利用溶胶凝胶法制备了Fe2O3纳米膜及气敏元件.利用XRD(X射线衍射)、AFM(原子力显微镜)对纳米膜的结构及形貌进行了表征,结合Fe2O3纳米膜的形成机理,主要讨论了镀膜次数对薄膜结构、性能的影响;研究了薄膜元件的阻温特性及室温气敏性能.结果表明:镀膜20次后,Fe2O3颗粒粒径约为20~30 mn,镀膜30次后,纳米膜平整、均匀、无裂纹;室温下薄膜元件便对H2CH4有一定的气敏效应,响应时间小于3s,灵敏度随气体浓度变化呈线性关系.  相似文献   

15.
采用化学共沉淀法制备了用于磁致驱动人工肌肉的Fe3O4纳米粉,经正交试验得到了最佳制备工艺参数,用XRD、TEM及振动样品磁强计等对其进行了表征.结果表明:产物平均粒径为9.7 nm,饱和磁化强度为60.9 A·m2·kg-1,具有超顺磁性;用Fe304纳米粉制备的磁致驱动人工肌肉的表面比用分析纯Fe3 O4制备的表面更加平滑、颗粒分布更趋均匀.  相似文献   

16.
本文对在镀液中添加不同含量La2O3微粒对Ni-W-La2O3复合镀层组织和性能的影响进行研究。结果表明,镀液中La2O3微粒含量为4 g/L时,Ni-W-La2O3复合镀层组织均匀致密、表面平整,硬度高,耐高温和耐腐蚀性能好。  相似文献   

17.
采用静电纺丝法,以Fe3O4纳米粒子为磁性填料、明胶为基体,制备出磁性电纺丝明胶纳米纤维支架,SEM观察发现所制备的电纺丝纤维支架具有连续、光滑、直径分布均匀的纤维形貌,XRD与FT—IR分析验证了磁性电纺丝明胶纳米纤维支架中Fe3O4的存在,VSM发现磁性电纺丝明胶纳米纤维支架具有超顺弱磁性,TEM证实了磁性电纺丝明胶纳米纤维支架中Fe3O4纳米粒子以团聚形式存在,提示我们应进一步研究Fe3O4纳米粒子表面修饰与改性,以提高其分散性。本研究制备的磁性电纺丝明胶纳米纤维支架为进一步应用于生物医学工程领域奠定了基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号