首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A miniature impedance sensor used for field diagnosis of the early failure of coatings has been developed based on microelectronics and electrochemical impedance spectroscopy (EIS). The aging process of polyurethane-based coatings in salt spray test chamber was studied using the impedance sensor. Several critical indexes related to EIS such as phase angle (θ10Hz, θ15kHz), breakpoint frequency (fb), specific capacitance (C10Hz, C15kHz), and impedance modulus (Z0.1Hz) were proposed to evaluate the severity of coating degradation. The results indicated that the impedance sensor could accurately monitor the degradation process of coatings, and once Z0.1Hz?<?106 Ω cm2, fb?>?100 Hz, or θ10Hz?<?20°, the coating may be regarded as completely degraded and fails to protect the metal substrate.  相似文献   

2.
The electrochemical behavior of single layer TiN, CrN, TiAlN and multilayer TiAlN/CrN coatings, deposited on steel substrates using a multi-target reactive direct current (dc) magnetron sputtering process, was studied in 3.5% NaCl solution. The total thickness of the coatings was about 1.5 μm. About 0.5 μm thick chromium interlayer was used to improve adhesion of the coatings. With an aim to improve the corrosion resistance, an additional interlayer of approximately 5 μm thick electroless nickel (EN) was deposited on the substrate. Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) were used to study the corrosion behavior of the coatings. Scanning electron microscopy and energy dispersive X-ray analysis were used to characterize the corroded samples. The potentiodynamic polarization tests showed lower corrosion current density and higher polarization resistance (Rp) for the coatings with EN interlayer. For example, the corrosion current density of TiN coated steel was decreased by a factor of 10 by incorporating 5 μm thick EN interlayer. Similarly, multilayer coatings of TiAlN/CrN with EN interlayer showed about 30 times improved corrosion resistance as compared to the multilayers without EN interlayer. The porosity values were calculated from the potentiodynamic polarization data. The Nyquist and the Bode plots obtained from the EIS data were fitted by appropriate equivalent circuits. The pore resistance (Rpore), the charge transfer resistance (Rct), the coating capacitance (Qcoat) and the double layer capacitance (Qdl) of the coatings were obtained from the equivalent circuit. Multilayer coatings showed higher Rpore and Rct values as compared to the single layer coatings. Similarly, the Qcoat and Qdl values decreased from uncoated substrate to the multilayer coatings, indicating a decrease in the defect density by the addition of EN interlayer. These studies were confirmed by examining the corroded samples under scanning electron microscopy.  相似文献   

3.
Bing Zhao 《Electrochimica acta》2007,52(12):3976-3984
The corrosion behavior of reinforcing steel in cement mortar has been studied by electrochemical noise (EN) compared with the electrochemical impedance spectroscopy (EIS). The wavelet transform, as well as the statistical methods including the standard deviation of current noise (σI) and noise resistance (Rn), has been employed to analyze the EN data of reinforcing steel in mortar. It is revealed that there exist three different corrosion stages of reinforcing steel in cement mortar, including a competition process between breakdown and repassivation of passive film, a pitting development and an active corrosion during the 20 cyclic immersion and drying tests. The energy distribution plot (EDP) is able to provide useful information about the dominant process for the different corrosion stages.  相似文献   

4.
Ni-P and Ni-Cu-P deposits were supported over the commercial carbon using the electroless plating technique. The formed samples were characterized by applying SEM, XRD and EDX analyses. An amorphous Ni-P surface was obtained with 73.70 wt% Ni and 11.45 wt% P. The addition of copper to the plating bath reduces the deposited amount of nickel and phosphorus. The electrochemical performance of these deposits has been investigated in 0.1 M KOH solution using electrochemical impedance spectroscopy (EIS) measurements. The effect of pH, deposition time and temperature of the plating bath on the impedance characteristics of the two deposits was studied. It was found that the resistance (RT) and relative thickness (1/CT) of the two coatings in 0.1 M KOH solution increase with increasing either pH or deposition time or temperature of the plating bath. Our results indicate that Ni-Cu-P deposit has more corrosion resistance and lower corrosion current density (icorr) value than Ni-P deposit under different conditions. EIS results were well confirmed by potentiodynamic polarization and cyclic voltammetry techniques.  相似文献   

5.
Self-assembled monolayers of dodecanethiol (C12SH-SAMs) on polycrystalline gold were prepared under ultrasonic irradiation at 100 W (the actual ultrasonic power intensity is about 0.1 W cm−2 including the heat loss) for different time and investigated by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). CV experiments show that the differential capacitance Cd values of the C12SH-SAM prepared under ultrasonic irradiation at 100 W (0.1 W cm−2) for 15 min are independent of the scan rate, the thickness d value of this monolayer is 17.5 Å, the tilt angle φ value of the molecules in this monolayer from the gold surface normal was calculated to be 30° and the difference value of the current density at −0.2 and 0.5 V (Δip) is only 0.69 μA cm−2. From the EIS experiments, we find that the phase angle value at 1 Hz Φ1 Hz of the C12SH-SAM prepared under ultrasonic irradiation at 100 W (0.1 W cm−2) for 15 min is 89°, the charge transfer resistance Rct value of this monolayer is 1.40 × 106 Ω cm2 and the surface coverage θ value of this monolayer was calculated to be 99.997% from Rct. These results indicate that the C12SH-SAM of almost defect-free structure and very low ionic permeability can be formed under ultrasonic irradiation at 100 W (0.1 W cm−2) in a short time (15 min).  相似文献   

6.
The resistance against corrosion of an epoxy-polyamine-based coating immersed in a 3 wt.% sodium chloride solution was investigated by electrochemical impedance spectroscopy (EIS). The organic coating contained glass flakes as pigment in order to enhance its barrier characteristics. The data show that this coating is more strongly adhered and exhibits higher protection characteristics when applied onto carbon steel substrates than on galvanized steel. Though the capacitance of the coating (CC) does not show any appreciable variation with immersion time, the resistance (RPO) of the film is observed to increase with time upon immersion. The analysis of the data sustains that the organic film behaves as a porous, non-barrier coating. Two time constants are observed even at earlier exposures, and the improved corrosion resistance developed after the coating system was exposed to the test electrolyte is considered to originate from the precipitation of corrosion products within the pores in the film.  相似文献   

7.
Amorphous hydrated iron (III) phosphate has been synthesized by a coordinate precipitation method from equimolecular Fe(NO3)3 and (NH4)2HPO4 solutions at an elevated temperature. Hydrated iron (III) phosphate samples and the corresponding LiFePO4/C products were characterized by XRD and SEM. The electrochemical behavior was studied by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The LiFePO4/C fabricated from as-synthesized FePO4 delivered discharge capacities of 162.5, 147.3, 133.0, 114.7, 97.2, 91.3 and 88.5 mAh g−1 at rates of 0.1C, 0.2C, 0.5C, 1C, 2C, 3C and 4C with satisfactory capacity retention, respectively.  相似文献   

8.
Scanning electrochemical microscopy (SECM) is an excellent technique to detect electrochemical processes with high spatial resolution. In this work, the effect of silicon (Si) nanoparticles on the corrosion protection performance of epoxy-coated steel was examined by electrochemical impedance spectroscopy (EIS) and SECM analysis. The EIS was performed in continuous immersion in 0.1?M NaCl(aq) solution. The addition of Si nanoparticles increased the coating film resistance (R f) and the charge transfer resistance (R ct) of coated steel. SECM mapping and line scan analysis was performed in order to estimate the coating performance with Si nanoparticles in 0.1?M NaCl(aq) solution. SECM results indicated that the tip current at ?0.70?V was decreased by the addition of Si nanoparticles in epoxy film. These results suggested that the dissolved oxygen (DO) was consumed by anodic dissolution of Si nanoparticles. Surface analysis showed that the Si was enriched at the scratched region of the coated steel after a corrosion test. From these results, Si was dissolved as Si n+ and transferred to the scratched area, and then consumed the DO in the solution. Thus, the anodic dissolution of Fe at the scratched area was suppressed by the Si nanoparticles, which implies the sacrificial effect of Si from the coating against the steel corrosion. Hence, it was concluded that the Si nanoparticles had a beneficial effect on enhancing the corrosion resistance of the coated steel.  相似文献   

9.
Various processes can occur when paints are in contact with moisture, such as ingress of water and aggressive ions into the coating. As a consequence, the microstructure and properties of the paints can be affected. The present study combines electrochemical impedance spectroscopy (EIS) and in situ atomic force microscopy (AFM) to investigate the barrier property of waterborne and solventborne coatings on mild steel, paying particular attention to the occurrences in the first 24 h after contact between the coating surface and electrolyte. The sequential in situ AFM images revealed that changes on the order of hundreds of nanometres at the coating surface have occurred shortly after the exposure to the electrolytes. EIS observations for the clear waterborne alkyd coating revealed a rise in the |Z|0.015Hz and a decrease in the coating capacitance after a few hours of exposure. Evidences that water uptake caused swelling of the coating and promoted the closure/blockage of pores were given by means of in situ AFM. The solventborne alkyd emulsion has demonstrated lower reactivity to the presence of the electrolyte and a correlation between the coating resistance and defects/pores evolution is suggested.  相似文献   

10.
Synthesis of poly(N-methylaniline) (PNMA) on pure iron and Pt electrodes was carried out from aqueous 0.3 M oxalic acid solution containing 0.1 M N-methylaniline (NMA) by potentiodynamic and galvanostatic techniques. It was found that when compared to polyaniline (PAni) and its ring- and N-ethyl-substituted derivatives, PNMA can be electrosynthesized with lower upper scanning potential (upper potential limit, Eupp) of 0.8 V vs. saturated calomel electrode (SCE) on an Fe electrode. PNMA coatings were characterized by electrochemical, scanning electron microscopy (SEM) and FTIR techniques. Linear anodic potentiodynamic polarization results proved that increasing the acidity of the polymerization solution causes more effective protection against corrosion in 0.5 M H2SO4 medium for PNMA. Moreover, PNMA exhibited similar protective properties with PAni under the same corrosion test conditions. Tafel test results reveal that the PNMA coating appears to enhance protection for iron in 0.5 M NaCl and 0.1 M HCl solutions. According to EIS results, the PNMA coating is able to offer protection to Fe electrodes in NaCl compared to that in HCl medium over a long immersion period.  相似文献   

11.
KeunWoo Cho 《Electrochimica acta》2007,52(13):4449-4456
A trivalent chromium based conversion coating (CCC), based on chromium nitrate solution with Co(II) ions, was developed on Zn substrate. The corrosion resistance of the trivalent CCC, measured in deaerated pH 8.0 borate buffer + 0.01 M NaCl solution using anodic polarization and electrochemical impedance spectroscopy (EIS), was very sensitive to both immersion time and bath pH. Micro-cracks were found on the surface of the CCC. Besides, the density of micro-crack and the coating thickness also depended on immersion time and bath pH. With increasing the coating thickness its pitting potential increased and passive current density decreased. The trivalent CCC formed on Zn for 40 s in pH 1.7 bath showed the best corrosion resistance, and the pitting potential increased significantly from −355 mVSCE for Zn to 975 mVSCE for the trivalent CCC on Zn. To explain the corrosion behavior of the trivalent CCC using EIS analysis, a modified equivalent circuit, which considered the micro-cracks in the coating and chromium corrosion product (CCP) deposited in the micro-cracks, was designed and the variation of each electrical parameter was examined. Especially, its corrosion behavior was well described by the variation of the resistance of CCP (Rccp).  相似文献   

12.
K. Al-Muhanna  K. Habib 《Desalination》2010,250(1):404-407
The corrosion of four types of alloys, under a dynamic condition, has been studied in continuous fresh seawater system using electrochemical impedance spectroscopy (EIS) technique. The materials used in this study were stainless steel 304, Cu-Ni 70-30, Hastelloy G-30, and titanium. The total exposure time of the test was 180 days, in continuous fresh seawater of the Gulf in Kuwait. The EIS tests were carried out by using EG&G software and hardware instrument. Electrochemical parameters such as the polarization resistance (RP), solution resistance (RSol), and the double layer capacitance (CdL) of these alloys were determined. Then the obtained EIS parameters were used to study the effect of the seasonal change of the Gulf seawater on the corrosion behavior of the tested materials. All the obtained EIS parameters showed that the seasonal changes of the Gulf seawater have a significant effect on controlling the rate of the formation of the marine bio-film on the surface of tested materials. Consequently, the corrosion behavior of the materials tends to vary as a function of the rate formation of the marine bio-film on the surface of tested materials.  相似文献   

13.
In situ Raman spectroscopy, electrochemical impedance spectroscopy (EIS) and polarization curves were used to study the corrosion behavior of reinforcing steel in simulated concrete pore (SCP) solutions (saturated Ca(OH)2 solutions). Results indicated that the reinforcing steel remained passive in chloride-free SCP solutions. However, the anodic polarization curve of the steel did not exhibit a stable passive region in the SCP solution with 0.5 M NaCl, the corrosion current density exceeded 0.1 μA cm−2, the steel surface was unstable with chloride attack and localized corrosion appeared on it with FeCO3 and Fe2O3 as the main corrosion products.  相似文献   

14.
Poly(N-ethylaniline) (PNEA) coatings were grown by potentiodynamic synthesis technique on 304 stainless steel (SS) alloy from 0.1 M of N-ethylaniline (NEA) in 0.3 M oxalic acid solution. Characterization of adhesive and electroactive PNEA coatings was carried out by cyclic voltammetry, FT-IR spectroscopy and scanning electron microscopy (SEM) techniques. The protective properties of PNEA coatings on SS were elucidated using linear anodic potentiodynamic polarization, Tafel and electrochemical impedance spectroscopy (EIS) test techniques, in highly aggressive 0.5 M HCl and 0.5 M NaCl solutions. Linear anodic potentiodynamic polarization test results proved that PNEA coating improved the degree of protection against pitting corrosion in HCl and NaCl solutions. Tafel test results showed that PNEA coating appears to enhancement protection for SS in 0.5 M NaCl and 0.5 M HCl solutions. However, according to long-term EIS results, PNEA coating is better for the protection of SS electrodes during the long immersion period in NaCl compared to that in HCl medium.  相似文献   

15.
《Ceramics International》2023,49(18):30039-30048
The inherent micropores of micro-arc oxidation (MAO) coatings on magnesium alloy often cause poor long-term corrosion resistance. Herein, a low-porosity and high corrosion-resistant 8HQ/LDH/MAO composite coating, comprising a layered double hydroxide (LDH)-doped MAO primer and a top layer of 8-hydroxyquinoline (8HQ) inhibitor film, was deposited onto the magnesium alloy surface. Characterizations such as high-resolution field-emission transmission electron microscopy were performed to observe the synthesized nanoparticles’ morphology, size, composition, and structure. Results confirmed the successful synthesis of nitrate ion intercalated MgAl-LDH nanosheets and demonstrated the increase in thickness and denseness of the MAO coating after LDH doping. Based on electrochemical impedance spectroscopy and Tafel curves, the corrosion current density (jcorr) of the newly fabricated 8HQ/LDH/MAO composite coating was reduced by about three orders of magnitude. The low-frequency impedance modulus (|Z|ƒ=0.1 Hz) increased by nearly four orders of magnitude compared with that of bare Mg alloy. After 14 days of exposure to the corrosive electrolyte, the composite coating maintained a low jcorr, showing significantly enhanced corrosion resistance compared with single MAO coating. These findings demonstrated the synergism of LDH doping with 8HQ sealing to enhance the corrosion protection of MAO coating on magnesium alloy.  相似文献   

16.
Electrochemical impedance spectroscopy (EIS) was used to study the corrosion behavior of mild steel samples immersed in 1, 0.1, 0.01 and 0.001% Na2SO4 aqueous solutions at room temperature in order to analyze the corrosion mechanism and obtain representative values of corrosion rates in environments with different resistivity. The EIS technique was used to measure corrosion current densities in 1 to 0.01% Na2SO4 solutions, and the measurement corresponding to 0.001% concentration gave a scattered Nyquist plot, whereas in the Bode representation a response associated with solution resistance was obtained. Other electrochemical techniques such as linear polarization resistance, LPR, Tafel extrapolation method and electrochemical noise (EN) were used in order to compare the results obtained by EIS. The charge-transfer resistance (R ct) parameters obtained in the EIS technique agree well with the corresponding values of polarization resistance (R p) values obtained by the LPR technique, whereas the electrochemical noise resistance (R n) parameters obtained by the EN technique gave the highest values for all concentrations. These parameters generally tended to increase as the concentration of the solution decreased.  相似文献   

17.
Interfacial corrosion is responsible for the strength degradation of adhesive-bonded aluminum joints (ABJs) exposed to corrosive environment. In this study, electrochemical noise and electrochemical impedance spectroscopy (EIS) measurements were performed on the aluminum alloy X610-T4PD covered with adhesive (ACA) to understand the interfacial corrosion. And environmental simulation tests (i.e. neutral salt spray (NSS) and hot humidity environment) for ABJ were carried out to investigate the joint strength degradation. Test results indicated that the variations of current and potential in the EN measurement were closely related to the initiation of corrosion in the samples. The Nyquist plots in the EIS measurement for various immersion times showed that the corrosion of ACA accelerated after about 140 h. Furthermore, a linear relationship between the residual strength of ABJ exposed to NSS and the reciprocal of interfacial corrosion resistance (Rt) of ACA was found, which was verified by ABJ exposed to hot humidity environment.  相似文献   

18.
A nano-composite coating was formed by dispersing nano-Al2O3 as pigments in different concentrations, to a specially developed alkyd based waterborne coating. The nano-Al2O3 based composite coatings were applied on mild steel substrate by dipping. The dispersion of particles in coating system was investigated by using SEM and AFM techniques. The effect of addition of these nano-pigments on the electrochemical behavior of the coating was investigated in 3.5% NaCl solution, using electrochemical impedance spectroscopy (EIS). It was found that coating modified with higher concentration of nano-Al2O3 particles showed comparatively better performance as it was evident from pore resistance (Rp) and coating capacitance (Cc) values after 30 days of exposure. In general, the study showed an improvement in the corrosion resistance of the nano-particle modified coatings as compared to the neat coating, confirming the positive effect of nano-particle addition in coatings.  相似文献   

19.
The protective ability of hybrid nano-composite oxysilane coatings, deposited via sol–gel method on AA2024-T3 – aluminium alloy, were studied by linear voltammetry (LVA) and electrochemical impedance spectroscopy (EIS) methods in 0.05 M solution of NaCl. Cerium chloride (CeCl3) was incorporated as an inhibitor into a sol–gel hybrid matrix in two different routes: directly and via filled porous Al2O3 nano-particle aggregates with diameters up to 500 nm. The influences of the inhibitor concentration, as well as the influence of nano-particles on the barrier properties and the susceptibility against corrosion, were evaluated and EIS spectra were fitted by appropriated equivalent circuits. The values for Ccoat, Rcoat, Coxy and Roxy were achieved and their evolution over time was investigated. The investigated coatings possess highly expressed barrier properties (106 to 107 Ω cm2). Despite of the chloride ions inside of the matrix, some samples illustrated a significant durability of over 4000 h during exposure to the corrosion medium before first signs of corrosion appeared. The electrochemical results were compared with the neutral salt spray test. Thus, it was proved that the potential of these coatings is to be used as anticorrosive protective materials and are candidate to replace Cr(VI)-based anti-corrosion coatings.  相似文献   

20.
The effect of corrosion protection performance of epoxy coatings containing magnesium (Mg) nanoparticles on carbon steel was analyzed using scanning electrochemical microscopy (SECM) and electrochemical impedance spectroscopy (EIS). Localized measurements such as oxygen consumption and iron dissolution were observed using SECM in 0.1 M NaCl in the epoxy-coated sample. Line profile and topographic image analysis were measured by applying ?0.70 and +0.60 V vs the Ag/AgCl/saturated KCl reference electrode as the tip potential for the cathodic and anodic reactions, respectively. The tip current at ?0.70 V for the epoxy-coated sample with Mg nanoparticles decreased rapidly, which is due to cathodic reduction in dissolved oxygen. The EIS measurements were conducted in 0.1 M NaCl after wet and dry cyclic corrosion test. The increase in the film resistance (R f) and charge transfer resistance (R ct) values was confirmed by the addition of Mg nanoparticles in the epoxy coating. Scanning electron microscope/energy-dispersive X-ray spectroscope analysis showed that Mg was enriched in corrosion products at a scratched area of the coated steel after corrosion testing. Focused ion beam–transmission electron microscope analysis confirmed the presence of the nanoscale oxide layer of Mg in the rust of the steel, which had a beneficial effect on the corrosion resistance of coated steel by forming protective corrosion products in the wet/dry cyclic test.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号