首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 60 毫秒
1.
A specific oligodeoxynucleotide (ODN), ODN MT01, was found to have positive effects on the proliferation and activation of the osteoblast-like cell line MG 63. In this study, the detailed signaling pathways in which ODN MT01 promoted the differentiation of osteoblasts were systematically examined. ODN MT01 enhanced the expression of osteogenic marker genes, such as osteocalcin and type I collagen. Furthermore, ODN MT01 activated Runx2 phosphorylation via ERK1/2 mitogen-activated protein kinase (MAPK) and p38 MAPK. Consistently, ODN MT01 induced up-regulation of osteocalcin, alkaline phosphatase (ALP) and type I collagen, which was inhibited by pre-treatment with the ERK1/2 inhibitor U0126 and the p38 inhibitor SB203580. These results suggest that the ERK1/2 and p38 MAPK pathways, as well as Runx2 activation, are involved in ODN MT01-induced up-regulation of osteocalcin, type I collagen and the activity of ALP in MG 63 cells.  相似文献   

2.
目的研究乳酸杆菌对子宫内膜上皮细胞增殖的丝裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)通路的作用机制。方法将103个/mL乳酸杆菌与子宫内膜上皮细胞共培养20、40、60 min,各时间点收集细胞,采用Western blot法检测子宫内膜上皮细胞MAPK通路中ERK1/2、JNK、P38蛋白及其磷酸化水平。在子宫内膜上皮细胞中加入40 ng/mL U0126,再加入103个/mL乳酸杆菌,共培养20、40、60 min,各时间点收集细胞,采用Western blot及CCK-8法检测U0126对ERK1/2、JNK、P38、p90RSK蛋白磷酸化及细胞增殖的影响。结果乳酸杆菌能促进子宫内膜上皮细胞MAPK通路中ERK1/2蛋白发生磷酸化,共培养40和60 min组ERK1/2磷酸化水平显著增加,与对照(0 min)和20 min组相比,差异有统计学意义(P <0. 05),但与40和60 min组比较,差异无统计学意义(P> 0. 05);MAPK通路中JNK和P38总蛋白水平和磷酸化蛋白水平均无明显变化(P> 0....  相似文献   

3.
Protein synthesis is important for maintaining cellular homeostasis under various stress responses. In this study, we screened an anticancer drug library to select compounds with translational repression functions. AZD8055, an ATP-competitive mechanistic target of rapamycin complex 1/2 (mTORC1/2) inhibitor, was selected as a translational suppressor. AZD8055 inhibited protein synthesis in mouse embryonic fibroblasts and hepatocellular carcinoma HepG2 cells. Extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein kinase (MAPK) were activated during the early phase of mTORC1/2 inhibition by AZD8055 treatment. Combined treatment of AZD8055 with the MAPK kinase1/2 (MEK1/2) inhibitor refametinib or the p38 inhibitor SB203580 markedly decreased translation in HepG2 cells. Thus, the inhibition of ERK1/2 or p38 may enhance the efficacy of AZD8055-mediated inhibition of protein synthesis. In addition, AZD8055 down-regulated the phosphorylation of eukaryotic initiation factor 4E-binding protein 1 (4E-BP1), and AZD8055-induced phosphorylation of ERK1/2 and p38 had no effect on phosphorylation status of 4E-BP1. Interestingly, AZD8055 modulated the 4E-BP1 mRNA pool by up-regulating ERK1/2 and p38 pathways. Together, these results suggest that AZD8055-induced activation of MAPKs interferes with inhibition of protein synthesis at an early stage of mTORC1/2 inhibition, and that it may contribute to the development of resistance to mTORC1/2 inhibitors.  相似文献   

4.
Pancreatic β-cell failure and death is considered to be one of the main factors responsible for type 2 diabetes. It is caused by, in addition to hyperglycemia, chronic exposure to increased concentrations of fatty acids, mainly saturated fatty acids. Molecular mechanisms of apoptosis induction by saturated fatty acids in β-cells are not completely clear. It has been proposed that kinase signaling could be involved, particularly, c-Jun N-terminal kinase (JNK), protein kinase C (PKC), p38 mitogen-activated protein kinase (p38 MAPK), extracellular signal-regulated kinase (ERK), and Akt kinases and their pathways. In this review, we discuss these kinases and their signaling pathways with respect to their possible role in apoptosis induction by saturated fatty acids in pancreatic β-cells.  相似文献   

5.
Proliferation and migration of vascular smooth muscle cells (VSMC) are important in the development and/or progression of many cardiovascular diseases, including atherosclerosis. Evidence shows that matrix metalloproteinase (MMP)-2 and MMP-9 are related to the pathogenesis of atherosclerosis. The expressions of MMP-2 and MMP-9 in atherosclerosis are regulated via various pathways, such as p38 mitogen activated protein kinase (MAPK), extracellular signal regulated kinase 1 and 2 (ERK1/2), Akt, and nuclear factor kappa (NF-κB). Di(2-ethylhexyl) phthalate (DEHP) has been shown to induce atherosclerosis by increasing tumor necrosis factor (TNF)-α, interleukin (IL)-6, and intercellular adhesion molecule (ICAM) productions. However, whether DEHP poses any effects on MMP-2 or MMP-9 expression in VSMC has not yet been answered. In our studies, rat aorta VSMC was treated with DEHP (between 2 and 17.5 ppm) and p38 MAPK, ERK1/2, Akt, NF-κB, and MMP-2 and MMP-9 proteins and activities were measured. Results showed that the presence of DEHP can induce higher MMP-2 and MMP-9 expression than the controls. Similar results on MMP-regulating proteins, i.e., p38 MAPK, ERK1/2, Akt, and NF-κB, were also observed. In summary, our current results have showed that DEHP can be a potent inducer of atherosclerosis by increasing MMP-2 and MMP-9 expression at least through the regulations of p38 MAPK, ERK1/2, Akt, and NF-κB.  相似文献   

6.
Graphene oxide (GO) is a biocompatible material considered a favorable stem cell culture substrate. In this study, GO was modified with polydopamine (PDA) to facilitate depositing GO onto a tissue culture polystyrene (PT) surface, and the osteogenic performance of the PDA/GO composite in pluripotent embryonic stem cells (ESCs) was investigated. The surface chemistry of the PDA/GO-coated PT surface was analyzed by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). A high cell viability of ESCs cultured on the PDA/GO composite-coated surface was initially ensured. Then, the osteogenic differentiation of the ESCs in response to the PDA/GO substrate was assessed by alkaline phosphatase (ALP) activity, intracellular calcium levels, matrix mineralization assay, and evaluation of the mRNA and protein levels of osteogenic factors. The culture of ESCs on the PDA/GO substrate presented higher osteogenic potency than that on the uncoated control surface. ESCs cultured on the PDA/GO substrate expressed significantly higher levels of integrin α5 and β1, as well as bone morphogenetic protein receptor (BMPR) types I and II, compared with the control groups. The phosphorylation of extracellular signal-regulated kinase (ERK)1/2, p38, and c-Jun-N-terminal kinase (JNK) mitogen-activated protein kinases (MAPKs) was observed in ESCs culture on the PDA/GO substrate. Moreover, BMP signal transduction by SMAD1/5/8 phosphorylation was increased more in cells on PDA/GO than in the control. The nuclear translocation of SMAD1/5/8 in cells was also processed in response to the PDA/GO substrate. Blocking activation of the integrin α5/β1, MAPK, or SMAD signaling pathways downregulated the PDA/GO-induced osteogenic differentiation of ESCs. These results suggest that the PDA/GO composite stimulates the osteogenic differentiation of ESCs via the integrin α5/β1, MAPK, and BMPR/SMAD signaling pathways.  相似文献   

7.
Saturated stearic acid (SA) induces apoptosis in the human pancreatic β-cells NES2Y. However, the molecular mechanisms involved are unclear. We showed that apoptosis-inducing concentrations of SA activate the p38 MAPK signaling pathway in these cells. Therefore, we tested the role of p38 MAPK signaling pathway activation in apoptosis induction by SA in NES2Y cells. Crosstalk between p38 MAPK pathway activation and accompanying ERK pathway inhibition after SA application was also tested. The inhibition of p38 MAPK expression by siRNA silencing resulted in a decrease in MAPKAPK-2 activation after SA application, but it had no significant effect on cell viability or the level of phosphorylated ERK pathway members. The inhibition of p38 MAPK activity by the specific inhibitor SB202190 resulted in inhibition of MAPKAPK-2 activation and noticeable activation of ERK pathway members after SA treatment but in no significant effect on cell viability. p38 MAPK overexpression by plasmid transfection produced an increase in MAPKAPK-2 activation after SA exposure but no significant influence on cell viability or ERK pathway activation. The activation of p38 MAPK by the specific activator anisomycin resulted in significant activation of MAPKAPK-2. Concerning the effect on cell viability, application of the activator led to apoptosis induction similar to application of SA (PARP cleavage and caspase-7, -8, and -9 activation) and in inhibition of ERK pathway members. We demonstrated that apoptosis-inducing concentrations of SA activate the p38 MAPK signaling pathway and that this activation could be involved in apoptosis induction by SA in the human pancreatic β-cells NES2Y. However, this involvement does not seem to play a key role. Crosstalk between p38 MAPK pathway activation and ERK pathway inhibition in NES2Y cells seems likely. Thus, the ERK pathway inhibition by p38 MAPK activation does not also seem to be essential for SA-induced apoptosis.  相似文献   

8.
Lysophosphatidic acid (LPA), a naturally occurring glycerophospholipid, can evoke various biological responses, including cell migration, proliferation and survival, via activation of G protein-coupled receptors (GPCRs). However, the role of LPA receptors and details of LPA signaling in migration are largely unexplored. In this study we detect the expression of LPA1 and LPA3 receptors in rat aortic smooth muscle cells (RASMCs). LPA stimulated RASMCs migration in a dose-dependent manner and induced the phosphorylation of p38 mitogen-activated protein kinase (p38MAPK) and extracellular signal-regulated kinase (ERK). LPA-induced cell migration was significantly inhibited by specific LPA1/LPA3-receptor antagonist Dioctylglycerol pyrophosphate (8:0) (DGPP8.0) at higher concentration. Migration of cells toward LPA was partially, but significantly, reduced in the presence of SB-203580, a p38 MAPK inhibitor, but not PD98059, an ERK inhibitor. In addition, pertussis toxin (PTX), a Gi protein inhibitor, induced an inhibitory effect on p38 MAPK, ERK phosphorylation and RASMCs migration. These data suggest that LPA-induced migration is mediated through the Gi-protein-coupled LPA1 receptor involving activation of a PTX-sensitive Gi / p38MAPK pathway.  相似文献   

9.
10.
Transforming growth factor-β1 (TGF-β1)-induced myofibroblast transdifferentiation from orbital fibroblasts is known to dominate tissue remodeling and fibrosis in Graves’ ophthalmopathy (GO). However, the signaling pathways through which TGF-β1 activates Graves’ orbital fibroblasts remain unclear. This study investigated the role of the mitogen-activated protein kinase (MAPK) pathway in TGF-β1-induced myofibroblast transdifferentiation in human Graves’ orbital fibroblasts. The MAPK pathway was assessed by measuring the phosphorylation of p38, c-Jun N-terminal kinase (JNK), and extracellular-signal-regulated kinase (ERK) by Western blots. The expression of connective tissue growth factor (CTGF), α-smooth muscle actin (α-SMA), and fibronectin representing fibrogenesis was estimated. The activities of matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) responsible for extracellular matrix (ECM) metabolism were analyzed. Specific pharmacologic kinase inhibitors were used to confirm the involvement of the MAPK pathway. After treatment with TGF-β1, the phosphorylation levels of p38 and JNK, but not ERK, were increased. CTGF, α-SMA, and fibronectin, as well as TIMP-1 and TIMP-3, were upregulated, whereas the activities of MMP-2/-9 were inhibited. The effects of TGF-β1 on the expression of these factors were eliminated by p38 and JNK inhibitors. The results suggested that TGF-β1 could induce myofibroblast transdifferentiation in human Graves’ orbital fibroblasts through the p38 and JNK pathways.  相似文献   

11.
Ultraviolet B (UV-B) radiation induces the extreme production of either reactive oxygen species (ROS) or inflammatory mediators. The aim of this study was to evaluate the antioxidant activities of 70% ethanolic extract of Lablab purpureus (LPE) and the underlying mechanisms using HaCaT cells exposed to UV-B. High-performance liquid chromatography (HPLC) confirmed the presence of gallic acid, catechin, and epicatechin in LPE. LPE was shown to have a very potent capacity to scavenge free radicals. The results showed that LPE prevented DNA damage and inhibited the generation of ROS in HaCaT cells without causing any toxicity. LPE increased the expression of endogenous antioxidant enzymes such as superoxide dismutase-1 and catalase. Furthermore, LPE treatment facilitates the nuclear translocation of nuclear factor (erythroid-derived 2)-like 2 (Nrf-2), boosting the phase II detoxifying enzyme heme oxygenase-1 (HO-1) leading to the combatting of oxidative stress. However, pretreatment of LPE also caused the phosphorylation of mitogen-activated protein kinases (MAPK kinase) (p38 kinase) and extracellular signal-regulated kinase (ERK), whereas treatment with p38 and ERK inhibitors substantially suppressed LPE-induced Nrf2 and heme oxygenase (HO)-1 expression. These findings suggest that LPE exhibits antioxidant activity via Nrf-2-mediated HO-1 signaling through the activation of p38 and ERK, indicating that LPE can potentially be used as a remedy to combat oxidative stress-induced disorder.  相似文献   

12.
Bone absorption is necessary for the maintenance of bone homeostasis. An osteoclast (OC) is a monocyte–macrophage lineage cell that absorbs bone tissue. Extracellular signal-regulated kinases (ERKs) are known to play important roles in regulating OC growth and differentiation. In this study, we examined specific downstream signal pathways affected by ERK inhibition during OC differentiation. Our results showed that the ERK inhibitors PD98059 and U0126 increased receptor activator of NF-κB ligand (RANKL)-induced OC differentiation in RAW 264.7 cells, implying a negative role in OC differentiation. This is supported by the effect of ERK2-specific small interfering RNA on increasing OC differentiation. In contrast to our findings regarding the RAW 264.7 cells, the ERK inhibitors attenuated the differentiation of bone marrow-derived cells into OCs. The ERK inhibitors significantly increased the phosphorylation of adenosine 5′-monophosphate-activated protein kinase (AMPK) but not the activation of p38 MAPK, Lyn, and mTOR. In addition, while the ERK inhibition increased the expression of the RANKL receptor RANK, it decreased the expression of negative mediators of OC differentiation, such as interferon regulatory factor-8, B-cell lymphoma 6, and interferon-γ. These dichotomous effects of ERK inhibition suggest that while ERKs may play positive roles in bone marrow-derived cells, ERKs may also play negative regulatory roles in RAW 264.7 cells. These data provide important information for drug development utilizing ERK inhibitors in OC-related disease treatment.  相似文献   

13.
14.
Mitogen-activated protein kinase (MAPK) pathways are activated by several stimuli and transduce the signal inside cells, generating diverse responses including cell proliferation, differentiation, migration and apoptosis. Each MAPK cascade comprises a series of molecules, and regulation takes place at different levels. They communicate with each other and with additional pathways, creating a signaling network that is important for cell fate determination. In this review, we focus on ERK, JNK, p38 and ERK5, the major MAPKs, and their interactions with PI3K-Akt, TGFβ/Smad and Wnt/β-catenin pathways. More importantly, we describe how MAPKs regulate cell proliferation and differentiation in the rapidly renewing epithelia that lines the gastrointestinal tract and, finally, we highlight the recent findings on nutritional aspects that affect MAPK transduction cascades.  相似文献   

15.
Diallyl disulfide (DADS), a sulfur compound derived from garlic, has various biological properties, such as anticancer, antiangiogenic and anti-inflammatory effects. However, the mechanisms of action underlying the compound’s anticancer activity have not been fully elucidated. In this study, the apoptotic effects of DADS were investigated in DU145 human prostate carcinoma cells. Our results showed that DADS markedly inhibited the growth of the DU145 cells by induction of apoptosis. Apoptosis was accompanied by modulation of Bcl-2 and inhibitor of apoptosis protein (IAP) family proteins, depolarization of the mitochondrial membrane potential (MMP, ΔΨm) and proteolytic activation of caspases. We also found that the expression of death-receptor 4 (DR4) and Fas ligand (FasL) proteins was increased and that the level of intact Bid proteins was down-regulated by DADS. Moreover, treatment with DADS induced phosphorylation of mitogen-activated protein kinases (MAPKs), including extracellular-signal regulating kinase (ERK), p38 MAPK and c-Jun N-terminal kinase (JNK). A specific JNK inhibitor, SP600125, significantly blocked DADS-induced-apoptosis, whereas inhibitors of the ERK (PD98059) and p38 MAPK (SB203580) had no effect. The induction of apoptosis was also accompanied by inactivation of phosphatidylinositol 3-kinase (PI3K)/Akt and the PI3K inhibitor LY29004 significantly increased DADS-induced cell death. These findings provide evidence demonstrating that the proapoptotic effect of DADS is mediated through the activation of JNK and the inhibition of the PI3K/Akt signaling pathway in DU145 cells.  相似文献   

16.
This study aimed to challenge chemoresistance by curcumin (CUR) with drug-selected human lung cancer A549 sublines that continuously proliferate in the present of docetaxel (DOC) and vincristine (VCR). Their sensitivities to CUR were measured by MTT assay and the particular intracellular reactive oxygen species (ROS) was detected by fluorescence activated cell sorting (FACS) analysis. Apoptosis was analyzed by Annexin V assay of the flow cytometry. Inhibitors and RNA interference were used to examine the signaling pathway regulated by the kinases. The obtained data demonstrated that CUR induces chemoresistant cell apoptosis by generating ROS and application of N-acetylcysteine (NAC) blocks ROS production, resulting in apoptosis suppression. Phosphorylation of extracellular regulated kinase (ERK), p38 MAPK, and eIF-2α were increased but c-Jun N-terminal kinase (JNK) did not increase when chemoresistant cells were treated with CUR. Downregulation of ERK and p38 MAPK phosphorylation by their inhibitors had no effect on CUR-induced apoptosis. Interestingly, the knockdown of p38 MAPK with shRNA significantly reduced CUR-induced apoptosis on the chemoresistant sublines. Phosphorylation of the eIF-2α protein was inhibited when p38 MAPK was knocked down in DOC-resistant A549 cells, but a high level of phosphorylated eIF-2α protein remained on the VCR-resistant A549 cells when p38 MAPK was knocked down. These data confirmed that CUR-augmented ROS potently induced apoptosis via upregulated p38 MAPK phosphorylation. Therefore, activated p38 MAPK is considered a pro-apoptotic signal for CUR-induced apoptosis of chemoresistant human lung cancer cells.  相似文献   

17.
18.
19.
Persistent cell shrinkage, called apoptotic volume decrease (AVD), is a pivotal event of apoptosis. Activation of the volume-sensitive outwardly rectifying Cl(-) channel (VSOR) is involved in the AVD induction. On the other hand, activation of the MAP kinase (MAPK) cascade is also known to play a critical role in apoptosis. In the present study, we investigated the relationship between the AVD induction and the stress-responsive MAPK cascade activation during the apoptosis process induced by staurosporine (STS) in HeLa cells. STS was found to induce AVD within 2-5 min and phosphorylation of c-Jun N-terminal kinase (JNK) and p38 MAPK after over 20-30 min. VSOR blockers suppressed not only STS-induced AVD but also phosphorylation of JNK and p38 as well as activation of caspase-3/7. Moreover, a p38 inhibitor, SB203580, and a JNK inhibitor, SP600125, failed to affect STS-induced AVD, whereas these compounds reduced STS-induced activation of caspase-3/7. Also, treatment with ASK1-specific siRNA suppressed STS-induced caspase-3/7 activation without affecting the AVD induction. Furthermore, sustained osmotic cell shrinkage per se was found to trigger phosphorylation of JNK and p38, caspase activation, and cell death. Thus, it is suggested that activation of p38 and JNK is a downstream event of AVD for the STS-induced apoptosis of HeLa cells.  相似文献   

20.
Studies have shown that bone marrow-derived mesenchymal stem cells (BMSCs) can differentiate into dermal fibroblasts to participate in skin-repairing. However, at present, little is known about how microgravity affects dermal fibroblastic differentiation of BMSCs in space. The aim of this study was to investigate the effect of simulated microgravity (SMG) on the differentiation of BMSCs into dermal fibroblasts and the related molecular mechanism. Here, using a 2D-clinostat device to simulate microgravity, we found that SMG inhibited the differentiation and suppressed the Wnt/β-catenin signaling and phosphorylation of extracellular regulated protein kinases 1/2 (ERK1/2). After upregulating the Wnt/β-catenin signaling with lithium chloride (LiCl) treatment, we found that the effect of the differentiation was restored. Moreover, the Wnt/β-catenin signaling was upregulated when phosphorylation of ERK1/2 was activated with tert-Butylhydroquinone (tBHQ) treatment. Taken together, our findings suggest that SMG inhibits dermal fibroblastic differentiation of BMSCs by suppressing ERK/β-catenin signaling pathway, inferring that ERK/β-catenin signaling pathway may act as a potential intervention target for repairing skin injury under microgravity conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号