首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Transporting compressed gaseous hydrogen in tube trailers to hydrogen refueling stations (HRSs) is an attractive economic option in early fuel cell electric vehicle (FCEV) markets. This study examines conventional (Type I, steel) and advanced (Type IV, composite) high-pressure tube trailer configurations to identify those that offer maximum payload and lowest cost per unit of deliverable payload under United States Department of Transportation (DOT) size and weight constraints. The study also evaluates the impacts of various tube trailer configurations and payloads on the transportation and refueling cost of hydrogen under various transportation distance and HRS capacity scenarios. Composite tube trailers can transport large hydrogen payloads, up to 1100 kg at 7300 psi (500 bar) working pressure, while steel tube trailer configurations are limited by DOT weight regulations and may transport a maximum hydrogen payload of approximately 270 kg. Using steel pressure vessels to transport hydrogen at high pressure is counterproductive because of the rapid increase in vessel weight with wall thickness. The most economic composite tube trailer configuration includes 30-inch-diameter vessels packed in a 3 × 3 array. A linear relationship between the deliverable payload and the capital cost of a composite tube trailer has been developed for configurations with the lowest cost-per-unit payload. The capital cost is approximately $1100 per kg of deliverable hydrogen payload. Considering the entire delivery pathway (including refueling), tube trailer configurations with smaller vessels packed in greater numbers enable higher payload delivery and lower delivery cost in terms of $/kg H2, when delivering hydrogen over longer distances to large stations. Selection of the appropriate tube trailer configuration and corresponding hydrogen payload can reduce hydrogen delivery cost by up to 16%.  相似文献   

2.
With the anticipated introduction of hydrogen fuel cell vehicles to the market, there is an increasing need to address the fire resistance of hydrogen cylinders for onboard storage. Sufficient fire resistance is essential to ensure safe evacuation in the event of car fire accidents. The authors have developed a Finite Element (FE) model for predicting the thermal response of composite hydrogen cylinders within the frame of the open source FE code Elmer. The model accounts for the decomposition of the polymer matrix and effects of volatile gas transport in the composite. Model comparison with experimental data has been conducted using a classical one-dimensional test case of polymer composite subjected to fire. The validated model was then used to analyze a type-4 hydrogen cylinder subjected to an engulfing external propane fire, mimicking a published cylinder fire experiment. The external flame is modelled and simulated using the open source code FireFOAM. A simplified failure criteria based on internal pressure increase is subsequently used to determine the cylinder fire resistance.  相似文献   

3.
To improve the current design standards of the hydrogen composite cylinders, it is essential to understand the thermal response of the hydrogen composite cylinders subjected to fire impingement. In the present study, a fully coupled conjugate heat transfer model based on a multi-region and multi-physics approach is proposed for modelling the transient heat transfer behaviour of composite cylinders subjected to fire impingement. The fire scenario is modelled using the in-house version of FireFOAM, the large eddy simulation (LES) based fire solver within the frame of OpenFOAM. Three dimensional governing equations based on the finite volume method are written to model the heat transfer through the regions of composite laminate, liner and pressurized hydrogen, respectively. The governing equations are solved sequentially with temperature-dependent material properties and coupled interface boundary conditions. The proposed conjugate heat transfer model is validated against a bonfire test of a commercial Type-4 cylinder and its transient heat transfer behaviour is also studied.  相似文献   

4.
This paper reports a thermodynamic analysis of filling a fuel tank with compressed gaseous hydrogen. The analysis is based on energy and exergy methods. A parametric study is performed to investigate the effect of initial conditions on the exergy destruction and exergy efficiency of filling processes. The transient filling process is studied to determine the temperature and pressure changes inside the storage tank during filling.  相似文献   

5.
A comprehensive non-linear finite element model is developed for predicting the behavior of composite hydrogen storage cylinders subjected to high pressure and localized flame impingements. The model is formulated in an axi-symmetric coordinate system and incorporates with various sub-models to describe the behavior of the composite cylinder under extreme thermo-mechanical loadings. A heat transfer sub-model is employed to predict the temperature evolution of the composite cylinder wall and accounts for heat transport due to decomposition and mass loss. A composite decomposition sub-model described by Arrhenius's law is implemented to predict the residual resin content of thermal damaged area. A sub-model for material degradation is implemented to account for the loss of mechanical properties. A progressive failure model is adopted to detect various types of mechanical failure. These sub-models are implemented in ABAQUS commercial finite element code using user subroutines. Numerical results are presented for thermal damage, residual properties and profile of resin content in the cylinder. The developed model provides a useful tool for safe design and structural assessment of high pressure composite hydrogen storage cylinders.  相似文献   

6.
This article examines the problems involved in refueling vehicles with compressed hydrogen at a pressure of up to 87.5 MPa. A procedure for filling fuel tanks adopted by nine automobile manufacturers is presented and its function demonstrated on the basis of a series of application-specific simulation calculations.  相似文献   

7.
Hydrogen has been expected as one of the most promising green energy sources, especially in transportation section. Despite its great potential as a new source of energy, it is reluctant to build hydrogen charging stations for the fear of accidents such as hydrogen leakage, fire, and following explosion. To reduce those problems and promote the acceptance of hydrogen charging station, this study focuses on the hydrogen charging platform package (HCPP) which is a new type of the mobile hydrogen station. Hydrogen leakage cases are investigated using CFD (computational fluid dynamics) simulation. The simulation is performed with the whole configuration of the HCPP including main components, storage, compressor, and dispenser. Based on the risk assessment, hydrogen leak scenarios with high possibilities of accidents are simulated. The simulation results show the leak length of hydrogen gas, its dispersion, and the various ranges of volume ratios of leaked hydrogen gas. Based on the simulation results, it is clearly confirmed that the leaked hydrogen gas with high concentration stays inside the HCPP. Therefore, the effects of ventilation to reduce the possibility of the explosion are continuously considered to investigate the safety of the HCPP in the case of the leakage accident.  相似文献   

8.
The performance and cost of compressed hydrogen storage tank systems has been assessed and compared to the U.S. Department of Energy (DOE) 2010, 2015, and ultimate targets for automotive applications. The on-board performance and high-volume manufacturing cost were determined for compressed hydrogen tanks with design pressures of 350 bar (∼5000 psi) and 700 bar (∼10,000 psi) capable of storing 5.6 kg of usable hydrogen. The off-board performance and cost of delivering compressed hydrogen was determined for hydrogen produced by central steam methane reforming (SMR). The main conclusions of the assessment are that the 350-bar compressed storage system has the potential to meet the 2010 and 2015 targets for system gravimetric capacity but will not likely meet any of the system targets for volumetric capacity or cost, given our base case assumptions. The 700-bar compressed storage system has the potential to meet only the 2010 target for system gravimetric capacity and is not likely to meet any of the system targets for volumetric capacity or cost, despite the fact that its volumetric capacity is much higher than that of the 350-bar system. Both the 350-bar and 700-bar systems come close to meeting the Well-to-Tank (WTT) efficiency target, but fall short by about 5%.  相似文献   

9.
10.
This paper describes an alternative technology for storing hydrogen fuel onboard vehicles. Insulated pressure vessels are cryogenic capable vessels that can accept cryogenic liquid hydrogen, cryogenic compressed gas or compressed hydrogen gas at ambient temperature. Insulated pressure vessels offer advantages over conventional storage approaches. Insulated pressure vessels are more compact and require less carbon fiber than compressed hydrogen vessels. They have lower evaporative losses than liquid hydrogen tanks, and are lighter than metal hydrides.

The paper outlines the advantages of insulated pressure vessels and describes the experimental and analytical work conducted to verify that insulated pressure vessels can be safely used for vehicular hydrogen storage. Insulated pressure vessels have successfully completed a series of certification tests. A series of tests have been selected as a starting point toward developing a certification procedure. An insulated pressure vessel has been installed in a hydrogen fueled truck and tested over a six month period.  相似文献   


11.
Compressed hydrogen tanks are now widely used for onboard hydrogen storage in fuel cell vehicles (FCVs). However, because of the high storage pressure and the low thermal conductivity of carbon fibre reinforced polymer (CFRP), the emptying of such tanks during driving or emergency release can cause a significant temperature decrease and result in an in-tank gas temperature below the low safety temperature limit of ?40 °C even in warm weather. Once the gas temperature within the tank is lower than ?40 °C, the sealing elements at the boss of the tank may fail, and glass transition of the polymer liner of the type IV tank may occur; both can cause hydrogen leakage and severe safety problems. In this paper, the heat transfer correlations, thermodynamic analyses, computational fluid dynamics (CFD) simulations, experimental studies, and thermal management methods associated with the emptying process of compressed hydrogen tanks are comprehensively reviewed. Future research directions on this topic are suggested.  相似文献   

12.
Laser ignition (LI) is emerging as a strong technology to control the oxides of nitrogen (NOx) emissions from spark ignition (SI) engines without the need for any significant exhaust gas after-treatment and is an appropriate technology for meeting future emission norms in the automotive sector. In this study, particulate characteristics of LI engine fuelled with different compressed natural gas (CNG) and hydrogen mixtures [100% CNG, 10HCNG (10% v/v hydrogen with 90% v/v CNG), 30HCNG (30% v/v hydrogen with 70% v/v CNG), 50HCNG (50% v/v hydrogen with 50% v/v CNG) and 100% hydrogen] were investigated. Experiments were performed in a suitably modified single cylinder engine, which operated in LI mode at constant engine speed (1500 rpm) at five different engine loads (5, 10, 15, 20 and 25 Nm). Particulate characteristics were determined using an engine exhaust particle sizer (EEPS). Results showed that particle number concentration increased with increasing engine load. Number-size, surface area-size and mass-size distributions of particulates reflected that addition of hydrogen in the CNG improved particulate emission characteristics especially in nucleation mode particle (NMP) size range (10 nm < Dp < 50 nm). Among the test fuels, hydrogen-fuelled engine emitted the lowest number of particles. It was observed that the difference between particulate characteristics emitted by different test fuels reduced at higher engine loads. Significant contribution of lubricating oil in particulate emissions from both hydrogen as well as HCNG fuelled LI engine was an important finding of this study. Dominant contribution of larger particles (Dp > 50 nm) in total particle mass (TPM) was an important observation of this study. The qualitative correlation between total particle number (TPN) and TPM indicated that suitable fuel composition at different engine loads yielded cleaner exhaust from the LI engine. Overall, this study demonstrated that addition of hydrogen in CNG is advantageous from particulate reduction point of view, however, optimum fuel composition should be adjusted according to engine operating condition in order to reduce particulate emissions.  相似文献   

13.
An understanding of fracture behavior is crucial to the safe installation and operation of high-pressure composite cylinders for hydrogen storage. This work has developed a comprehensive finite element model to investigate axial surface flaws in cylinder liners using the fracture mechanics and a global–local finite element technique. Since the autofrettage process has a strong influence on cylinder fracture behavior, it is also considered in this analysis. The simulation process is broken down into three steps in order to precisely extract fracture parameters and incorporate the autofrettage effect. In the first step, the global model performs the autofrettage simulation to study the residual stress with consideration of both material hardening and the Bauschinger effect. In the second step, the global model uses residual stress to compute displacement for the local model. Finally, in the third step, the local model extracts the values of stress intensity factor and J-integral. Comparison is conducted on the fracture parameters with various autofrettage levels and crack shapes. The vicinity of the crack front is also studied by the size and shape of the plastic zone, and the validity of stress intensity factor and J-integral dominances is examined.  相似文献   

14.
During the driving of fuel cell vehicles, the fast depressurization of compressed hydrogen tanks plus the high storage pressure and the low thermal conductivity of carbon fiber reinforced plastic (CFRP) can lead to significant cooling of the tank. This can result in a temperature below −40 °C inside the compressed hydrogen tanks and cause safety problems. In this paper, a thermodynamic model that incorporates the nature of external natural convection was developed to describe the emptying process of compressed hydrogen tanks and was validated by experiments. Thermodynamic analyses of the emptying process were performed to study the global heat transfer characteristics and the effects of ambient temperature, defueling rate, defueling pattern, initial and final density of hydrogen gas, liner and CFRP thickness and the crosswind velocity on the final temperature decreases of hydrogen gas, the inner wall and the outer wall.  相似文献   

15.
Developers interested in high pressure storage of hydrogen for mobile use increasingly rely on composite cylinders for onboard storage or transport of dangerous goods. Thus, composite materials and systems deserve special consideration. History gives interesting background information important to the understanding of the current situation as to regulations, codes and standards.  相似文献   

16.
Leading physical and materials-based hydrogen storage options are evaluated for their potential to meet the vehicular targets for gravimetric and volumetric capacity, cost, efficiency, durability and operability, fuel purity, and environmental health and safety. Our analyses show that hydrogen stored as a compressed gas at 350–700 bar in Type III or Type IV tanks cannot meet the near-term volumetric target of 28 g/L. The problems of dormancy and hydrogen loss with conventional liquid H2 storage can be mitigated by deploying pressure-bearing insulated tanks. Alane (AlH3) is an attractive hydrogen carrier if it can be prepared and used as a slurry with >50% solids loading and an appropriate volume-exchange tank is developed. Regenerating AlH3 is a major problem, however, since it is metastable and it cannot be directly formed by reacting the spent Al with H2. We have evaluated two sorption-based hydrogen storage systems, one using AX-21, a high surface-area superactivated carbon, and the other using MOF-177, a metal-organic framework material. Releasing hydrogen by hydrolysis of sodium borohydride presents difficult chemical, thermal and water management issues, and regenerating NaBH4 by converting B–O bonds is energy intensive. We have evaluated the option of using organic liquid carriers, such as n-ethylcarbazole, which can be dehydrogenated thermolytically on-board a vehicle and rehydrogenated efficiently in a central plant by established methods and processes. While ammonia borane has a high hydrogen content, a solvent that keeps it in a liquid state needs to be found, and developing an AB regeneration scheme that is practical, economical and efficient remains a major challenge.  相似文献   

17.
A prototype hydrogen detection system using the micro-thermoelectric hydrogen sensor (micro-THS) was developed for the safety of hydrogen infrastructure systems, such as hydrogen stations. We have designed a detection part with a pressure proof enclosure adoptable for the international standard of Exd II CT3, and carried out an explosion strength test, explosion and fire hazard tests, and an impact test. The hydrogen sensing performance of the detection part of this prototype system showed a good linear relationship between the sensing signal and hydrogen concentrations in air, for a wide range of hydrogen concentrations from 10 ppm to 40,000 ppm (4 vol.%). This prototype detection system was installed in the outdoor field of the hydrogen station and the response for H2 gas in air of 100 ppm, 1000 ppm, and 10000 ppm was tested monthly for 1 year.  相似文献   

18.
Hydrogen is a promising alternative for current energy carriers. Compressed gas cylinders are the storage systems closest to the commercialization of hydrogen in vehicles. The safety factors in current standards are seen as restrictive for further growth and competitiveness of hydrogen infrastructure. A probabilistic approach can be employed in order to give a rational background to the safety factors. However, an acceptable probability of failure needs to be estimated before calculating the safety factors. The discussion of determining the acceptable probability must include the mass of hydrogen since this determines the consequences of an accident. It is concluded that an annual probability of failure of 10−7 would be appropriate for small pressure vessels containing a few kilograms of hydrogen. Larger pressure vessels of a few hundred kilograms or more should be designed for an annual probability 10−8.  相似文献   

19.
In the event of a fire, the TPRD (Thermally activated Pressure Relief Device) prevents the high-pressure full composite cylinder from bursting by detecting high temperatures and releasing the pressurized gas. The current safety performance of both the vessel and the TPRD is demonstrated by an engulfing bonfire test. However, there is no requirement concerning the effect of the TPRD release, which may produce a hazardous hydrogen flame due to the high flow-rate of the TPRD. It is necessary to understand better the behavior of an unprotected composite cylinder exposed to fire in order to design appropriate protection for it and to be able to reduce the length of any potential hydrogen flame. For that purpose, a test campaign was performed on a 36 L cylinder with a design pressure of 70 MPa. The time from fire exposure to the bursting of this cylinder (the burst delay) was measured. The influence of the fire type (partial or global) and the influence of the pressure in the cylinder during the exposure were studied. It was found that the TPRD orifice diameter should be significantly reduced compared to current practice.  相似文献   

20.
As an alternative, clean and sustainable solution, a biomass-based integrated power plant is designed and studied both thermodynamically and parametrically. Due to the environmental, economic and performance related advantages, the design of multigeneration energy plants is now increasing and becoming widespread technology. Biomass, which is one of the renewable power sources, is selected for the plant to be more sustainable and environmentally friendly. The proposed system using biomass as an energy source consists of several sub-plants integrated to utilize the waste thermal energy and to generate useful products which are electricity, hydrogen, fresh and hot water, heating, and cooling. In this paper, comprehensive work is carried out for plant modeling and simulation. The thermodynamic assessment results reveal that both energetic and exergetic effectiveness of the whole plant are 56.17% and 52.83%, which are affected positively by varying the reference state conditions, combustor temperature, biomass gasifier temperature, SOFC temperature and pressure, and biomass mass flow rate. In addition, the lowest energy and exergy efficiencies occur in the ORC combined ejector refrigeration cycle with 21.87% and 18.26%, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号