首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The Saginaw Bay watershed is unique and remains one of the most diverse watersheds in Michigan, containing the largest contiguous freshwater coastal wetland system in the United States. The watershed and Saginaw Bay support a wide variety of flora and fauna, agriculture and recreation opportunities. However, the rapid industrialization and population growth of the watershed in the 20th century strained the region's natural resources. Excessive nutrient loading, elevated bacteria levels, aquatic habitat loss, and chemical contamination all altered the watershed's ecosystem. These stressors contributed to declining fish and wildlife populations, loss of coastal wetlands, water quality concerns, beach closings, and the buildup of contaminants in the food web. Over the past four decades, extensive federal, state, and regional priority-based assessments and planning have positioned the Saginaw Bay watershed for significant restoration. There is a continued commitment by federal, state, and regional partners to advance restoration efforts. This paper reflects upon those activities and provides additional actions that would aid restoration work in the Saginaw Bay watershed and in the Saginaw Bay, a region of the Great Lakes that still must address significant environmental challenges to reach its full potential.  相似文献   

2.
Landscape metrics are often used to model nonpoint source pollution from agricultural and urban surface runoff. By considering topography and the spatial arrangement of land cover, landscape metrics can better account for hydrologic connectivity, loading quantity, and vegetated buffer filtering between nutrient loading sources and streams. For this study we develop a surface runoff nutrient loading metric that considers source (i.e. cropland or developed) loading and buffer filtering along hydrologic transport vectors, or flow paths. We use General Additive Modeling to evaluate the relationship between this metric and in-stream nitrogen (N) and phosphorus (P) concentrations in the Saginaw Bay watershed in Michigan, US and compare the relative predictive power between this metric and other landscape metrics that do not consider hydrologic connectivity. The flow path-based cropland loading metric was a stronger predictor of in-stream NO3 concentrations than alternative metrics. In-stream P concentrations were best predicted by models that included 48-h antecedent precipitation and catchment-wide proportion of developed landcover. Metric maps reveal high nutrient loading areas where only a small proportion of loading reaches streams via surface runoff, highlighting the need to consider nutrient loading via drainage tiles and other subsurface pathways in efforts to quantify nonpoint source loading to surface waters. The flow path-based loading metric is represented spatially as a gridded dataset showing estimates of nutrient loading adjacent to streams, and with higher resolution stream delineation data it could be used by land managers to target locations for precision buffer placement to intercept surface runoff and reduce nutrient loading.  相似文献   

3.
Sucker species (Catostomidae) are a common benthic invertivore in North American waterbodies yet are understudied in the Laurentian Great Lakes. Despite large biomass and potential competition with more economically valuable fish species, the diets of Great Lakes suckers are poorly described. We explored the gut contents of adult white suckers (Catostomus commersonii) in Lake Michigan and Saginaw Bay, Lake Huron, and longnose suckers (Catostomus catostomus) in Lake Michigan. Chironomidae was a primary prey for white suckers in both lakes, along with Amphipoda in Saginaw Bay. For longnose suckers in Lake Michigan, gut contents were dominated by Amphipoda and Isopoda. Relative to other benthic invertebrate taxa, white suckers positively selected Chironomidae as preferred prey (indexed via Chesson’s alpha). Moreover, the average length of consumed Chironomidae and Amphipoda increased with white sucker length, suggesting preferential size selection of prey as suckers grow. Although dreissenid mussels are overwhelmingly abundant in the benthos of Lake Michigan and Lake Huron, relatively few dreissenid mussels were consumed by either sucker species. Thus, suckers are unlikely to contribute to the control of these invasive invertebrates.  相似文献   

4.
The history of petroleum contamination of Saginaw Bay is given by a 60 cm core recording sediment accumulation over the last two centuries. Aliphatic hydrocarbon concentrations average 385 μgm/gm in modern sediments and progressively decrease from 10 cm to 40 cm in the core to average 30 μgm/gm in sediments deposited before 1876. An unresolved complex mixture of hydrocarbons diagnostic of petroleum represents about 90 percent of the total concentration in all core sections deposited over the last 100 years. In older sediment, this decreases but still comprises 40 percent of the total at the bottom of the core. These patterns indicate a large input of nonbiogenic hydrocarbons which has accumulated in the sediments of Saginaw Bay. While a portion of these may originate from natural sources, such as forest fires and erosion of ancient sediments, we conservatively estimate that 2 to 4 X 104 Tonne of petroleum hydrocarbons have been introduced to Saginaw Bay since the 1870s.  相似文献   

5.
A multi-class, phytoplankton simulation model was developed and calibrated to an extensive set of field data acquired on Saginaw Bay, Lake Huron, during 1974. Phytoplankton biomass was partitioned into five functional groups: diatoms, greens, non-N2-fixing blue-greens, N2-fixing blue-greens, and “others”. Nutrients included in the model were phosphorus, nitrogen, and silicon. The model was applied to a single spatial segment encompassing the inner portion of Saginaw Bay.Process level analyses were conducted with the calibrated model to determine the relative importance of various factors affecting phytoplankton and nutrient dynamics. The concept of a single limiting factor for phytoplankton growth was found to be overly simplistic. Results indicated that temperature and light were relatively more growth rate limiting than nutrients on an annual average basis. However, as a consequence of nutrient depletion, nutrients became relatively more important at the times of peak phytoplankton crops. Nitrogen was found to be relatively more growth rate limiting than phosphorus to the total phytoplankton crop, although important differences occurred among the individual functional groups. At various times, and for various groups, all three nutrients were important in limiting either the rates of growth and/or the maximum sizes of the phytoplankton crops. Results were consistent with the hypothesis that while nitrogen and silicon were important in phytoplankton-nutrient dynamics, the supply of phosphorus would ultimately determine the size of the blue-green component of the total crop because N2-fixing blue-greens do not have absolute requirements for dissolved available nitrogen or silicon. Results indicated that phosphorus requirements of spring and fall diatom crops were satisfied primarily by external loadings. Phosphorus requirements of summer blue-green crops were satisfied primarily by recycle processes within the water column. Upon cell death, direct nutrient recycle to the available nutrient compartments in the water column from excess internal phytoplankton stores was found to be important for both phosphorus and nitrogen. Phytoplankton production was found to be extremely sensitive to variations in the light extinction coefficient in the water column, and relatively insensitive to variations in incident solar radiation.  相似文献   

6.
The benthic filamentous green algal (FGA) community of Saginaw Bay, Lake Huron, has not been extensively examined, despite its apparent link to shoreline fouling. The objective of this study was to elucidate factors, including light, nutrients, and substrate, expected to affect growth of FGA. We examined the FGA community in the southwest region of the bay, which started ~ 5 km northwest from the Saginaw River, a known source of nutrients and sediment. Cellular nutrient quotas and photosynthetic parameters were measured in FGA over a range of water column depths and distances from the Saginaw River and then compared to published thresholds of limitation. Our results suggest that light limitation sets the maximum depth of growth and prevents growth near the Saginaw River. Our data also indicate that a light gradient extends from the Saginaw River into our study area, but we did not observe direct evidence for the existence of a parallel nutrient gradient. Most of the FGA community experienced both light and P stress, with the exception of 20% of the sampled FGA, which experienced saturating levels of midday light. Nitrogen deficiency was never observed. Our results suggest that post-dreissenid invasion increases in water clarity extended the maximum depth limit for FGA from ~ 3.3 to ~ 5 m, greatly increasing the area of FGA growth. One quarter of sampled FGA were strictly P-limited and 87–100% of sampled FGA were P-deficient, suggesting that phosphorus-based management approaches could successfully reduce FGA growth in inner Saginaw Bay.  相似文献   

7.
Predatory invertebrates can be a major factor in structuring zooplankton communities. We collected zooplankton and the predatory cladocerans Bythotrephes longimanus and Leptodora kindtii at 4 stations in inner Saginaw Bay, Lake Huron during May–October 2009 and April–November 2010. Production of zooplankton prey was estimated using temperature and biomass based empirical models. Population consumption rates of Bythotrephes and Leptodora were estimated using a combination of conversion efficiency, bioenergetics and experimental based models. Bythotrephes biomass peaked in July of 2009 and 2010, and in 2010, the biomass rebounded in the fall after a late summer decline. Leptodora biomass was generally lower than that of Bythotrephes except in June 2009 and August 2010. Zooplankton biomass, production and composition showed strong seasonal patterns, with biomass more than tripling between May and June each year, largely due to an increase in biomass of Daphnia in June. By contrast, total zooplankton biomass declined by over 70% between June and July owing to declines in Daphnia biomass. Population consumption by predatory cladocerans was a large percentage or even exceeded prey production during July and August in Saginaw Bay regardless of which consumption models were used. This short term (< 2 months) but pronounced predation capacity of predatory cladocerans in Saginaw Bay was mainly due to consumption by Bythotrephes rather than Leptodora. Bythotrephes likely play an important role in food web function and should be accounted for when evaluating the flow of energy within the Laurentian Great Lakes systems.  相似文献   

8.
The spatial and temporal distribution of selected inorganic carbon equilibrium species is presented for eleven locations, representing the near surface waters of Saginaw Bay in Lake Huron during 1974. Carbon dioxide and calcite equilibrium conditions are determined through solution of temperature and ionic strength adjusted equilibria and evaluated with respect to suitability as indicators of physical conditions and biological activity in the waters of Saginaw Bay. The participation of inorganic carbon species in several chemical and biochemical reactions leads to the utility of these species in reflecting documented spatial and temporal trends in phytoplankton biomass, temperature, ionic strength, and ionic composition. Substantial seasonal variations in carbon dioxide and calcite equilibrium conditions were observed at several locations throughout the bay. The magnitude of variation was greatest in the more productive areas of the bay, where extensive calcite supersaturation and carbon dioxide undersaturation occurred. Maximum calcite saturation and minimum carbon dioxide saturation were calculated for the warm, productive summer months. Transformations in chemical equilibria were mediated by both physical and biochemical factors,as reflected by seasonal changes in temperature and pH. The significance of photosynthetic activity was most pronounced in the inner bay and in shore zones, while temperature became of greater relative importance where bay waters mixed with the open waters of Lake Huron. Strong correlations between time averaged data for chlorophyll a and carbon dioxide (R = 0.97) and chlorophyll a and calcite saturation (R = 0.95) indicate the importance of photosynthetic activity in establishing the distribution of equilibrium conditions of inorganic carbon species.  相似文献   

9.
This study provides species-specific catch and baseline mortality estimates of non-target species (by-catch) for the Saginaw Bay, Lake Huron commercial trap net fishery. By-catch can represent a significant mortality source that is often unknown. By-catch and by-catch mortality rates in the Saginaw Bay commercial trap net fishery, which primarily targets lake whitefish (Coregonus clupeaformis), yellow perch (Perca flavescens), and channel catfish (Ictalurus punctatus), are currently unknown. From May through August 2010, we observed onboard commercial trap net vessels and took species-specific counts of by-catch and estimated initial by-catch mortality (i.e., morbid or floating fish). The high levels of walleye (Sander vitreus) catch and mortality observed within inner Saginaw Bay have not been previously documented in the Laurentian Great Lakes. Walleye by-catch averaged 127.3 individuals per trap net lift and 42% of those caught were morbid. The levels of lake trout (Salvelinus namaycush) catch observed were within the range observed in previous studies, but mortality (percent) was higher than has been previously observed. Lake trout by-catch averaged 39.4 individuals per lift and 39.2% of those were morbid. Through the use of generalized linear models, this analysis also indicated factors that most influenced catch of non-target species including time of year and soak time (i.e., time interval between trap net lifts). Surface water temperature and trap net depth most influenced mortality. These results may inform fishers and fisheries managers and highlight the need for comprehensive by-catch monitoring throughout the Great Lakes.  相似文献   

10.
Organic pollution in lower Green Bay, Lake Michigan over the past century was accompanied by the local extirpation of Hexagenia (primarily H. limbata) mayflies. Recoveries were made in other systems where population crashes had occurred (e.g., western Lake Erie); however, an active recovery does not appear to be taking place in Green Bay. Excessive primary production has caused substantial benthic organic matter accumulation resulting in a fluidized “sludge-like” substrate as the majority of the sub-littoral habitat. Fluidized substrate potentially hinders Hexagenia nymphs' abilities to construct and maintain burrows critical to their life cycles. In this study, Hexagenia bilineata nymphs were collected from an Upper Mississippi River backwater where their presence at high densities in relatively fluid sediment had been observed, and reared in oxygenated aquaria containing lower Green Bay or Upper Mississippi River sediment. Their survival, growth, secondary production, and biomass turnover were calculated for a 166 day period. Seventy-five percent of nymphs survived or metamorphosed into winged sub-imagos in lower Green Bay substrates compared to 40.6% in Upper Mississippi River substrates. Nymph dry weight more than tripled in Green Bay substrates and more than doubled on Upper Mississippi River substrates. Production was notably higher in lower Green Bay substrates. Differences in survival and production between the two treatments were statistically significant (P < 0.05), while differences in growth and biomass turnover were not (P > 0.05). Based on these results, the high fluidity of lower Green Bay substrates did not appear to hinder burrow construction or maintenance.  相似文献   

11.
12.
During the period 1976-1978, a study of hazardous materials in Saginaw Bay was conducted. This study included the fate and distribution of cadmium, copper, lead, and zinc in the bay. A spatially segmented, dynamic mass balance model was developed to describe concentrations of metals and suspended solids in the water column and in the sediments. A wind-driven resuspension mechanism was used to describe the sediment-water interactions. The distribution of metals in the water column was determined by equilibrium partitioning between the ambient suspended solids and the dissolved phase. Model output was calibrated to field data for the principal variables. Independent validation was obtained by comparing partition coefficients from the calibration to those calculated directly from the field observations. It was found that suspended solids were important in controlling the water column concentrations of the metals. The degree of control was a function of the partition coefficient between the metal and the solids, and the concentration of the solids. Adsorption of the metals to the solids was found to result in decreases to metals concentrations due to net sedimentation, as well as increases due to wind-driven resuspension. On an annual average basis, the net flux of the particulate components of all four metals was from the water column to the sediments except for copper in 1977.  相似文献   

13.
Colonization of the Laurentian Great Lakes by the invasive mussel Dreissena polymorpha was a significant ecological disturbance. The invasion reached Saginaw Bay, Lake Huron, in 1991 and initially cleared the waters and lowered algal biomass. However, an unexpected result occurred 3 years after the initial invasion with the return of nuisance summer blooms of cyanobacteria, a problem that had been successfully addressed with the implementation of phosphorus controls in the late 1970s. A multi-class phytoplankton model was developed and tested against field observations and then used to explore the causes of these temporal changes. Model scenarios suggest that changes in the phytoplankton community can be linked to three zebra mussel-mediated effects: (1) removal of particles resulting in clearer water, (2) increased recycle of available phosphorus throughout the summer, and (3) selective rejection of certain Microcystis strains. Light inhibition of certain phytoplankton assemblages and the subsequent alteration of competitive dynamics is a novel result of this model. These results enhance our understanding of the significant role of zebra mussels in altering lower trophic level dynamics of Saginaw Bay and suggest that their physical re-engineering of the aquatic environment was the major force driving changes in the phytoplankton community composition.  相似文献   

14.
Current velocities and water temperatures were measured in the four main passages between Green Bay and Lake Michigan and at several sites within the bay during summer and fall 1977. Monthly resultant currents indicate there is anticlockwise circulation in the bay during dominant southwesterly wind and a reversal of this pattern during episodes of northeasterly wind. It is common for two layers to flow through the mouth of the bay in opposite directions during the stratified season. Cold hypolimnetic lake water entering through the mouth and extending far into the bay maintains stratification and promotes flushing. The effects of resonance of forced and free long wave disturbances are prominent in current records; these oscillations are coherent and in phase across the mouth.  相似文献   

15.
Databases of point sources including combined sewer overflows (CSOs) were acquired from the governmental agencies to map the occurrences and magnitude of the CSOs. Multiple databases of land use, topography, hydrography, soils, and agricultural statistics were used to estimate nonpoint source loading potential in the Saginaw Bay Basin, Michigan. Animal manure production was computed from tabulations of animals by 5-digit zip code area for the census years of 1987, 1992, 1997, and 2002. Fertilizer applications for both urban and agricultural land uses were calculated from county fertilizer estimates for the same periods. Results indicate that point sources from municipalities, industrial sectors and business entities contribute approximately 25% of the total phosphorus load to Saginaw Bay, with the remainder being accounted for by nonpoint source contributions. While the total amount of nutrients (N and P) from animal manure and fertilizer applications and atmospheric deposition declined in the Saginaw Bay Basin, fertilizer applications in non-farmland increased significantly. Estimation of nutrient loading potential at 5-digit zip code level reveals more detailed spatial variation and critical areas of nutrient loading than county level data for implementation of targeted water quality programs.  相似文献   

16.
We evaluated seasonal energy content of age-0 yellow perch Perca flavescens and walleye Sander vitreus in Saginaw Bay, Lake Huron in 2009 and 2010. We also determined the energy content of age-1 fish from the 2009 and 2010 cohorts the following spring (i.e., for fish that had survived one winter) to evaluate overwinter energy losses. As expected, larger fish within each species had disproportionately higher energy content (i.e., slope relating length and energy > 3.0) than smaller conspecifics. By contrast to expectations, allometric slopes were > 3.0 in nearly all months, not just the fall, and were higher for age-0 yellow perch than for walleye, even though increased allocation to growth would have seemingly been beneficial to even the largest yellow perch during summer. Seasonal energy allocation patterns differed between years. In 2009, length specific energy content increased from late summer to fall for both species. However, for the 2010 cohorts of fish, length specific energy content decreased between late summer and fall for yellow perch and did not change for walleye. There were 13–17% overwinter declines in length specific energy content between the fall (October or November) and the spring (May) with no major differences between cohorts within a species or between species for a given year. Because young yellow perch and walleye are similar physiologically but differ in size (i.e., yellow perch are smaller), it is possible that overwinter energy losses are more important for yellow perch than for walleye.  相似文献   

17.
Age-0 lake whitefish Coregonus clupeaformis (11–160 mm total length) were collected from Saginaw Bay, Lake Huron during April–November 2009 and 2010 for diet analysis and for the evaluation of ontogenetic changes in feeding ecology. Lake whitefish ≤ 50 mm ate mainly zooplankton, after which their diets switched mainly to benthic macroinvertebrates. Cyclopoida were the dominant prey consumed by very small lake whitefish (< 17 mm) and the most frequently selected zooplankton type for individual small fish. Once lake whitefish reached 18–19 mm, Cyclopoida in the diet declined and cladocerans emerged as an important diet item. Daphnia were the most common cladoceran in the diets, but for fish 31–50 mm Bosminidae were also relatively important. Although the shift to Daphnia could represent an ontogenetic point when lake whitefish were large enough to effectively handle this prey, it also took place when the relative availability of Daphnia increased. Once lake whitefish were > 50 mm, Chironomidae larvae became a dominant prey item and this shift to benthivory coincided with a 55% increase in length-adjusted energy content between June and July. However, as fish grew (around 110–120 mm), Sphaeriidae and the benthic zooplankton Chydoridae became increasingly important in the diet. As these less energetically rich prey were incorporated into the diet, there were corresponding 21 and 15% decreases in length-adjusted energy content from July to August and September, respectively.  相似文献   

18.
We investigated spatial and temporal patterns in macroscopic benthic primary producer biomass, production, and composition in inner Saginaw Bay in 2009 and 2010. Charophytes and filamentous algae (FA) were relatively abundant, and vascular macrophytes were less common. The probability of benthic primary producer presence increased with the proportion of benthic substrate composed of rock. Most benthic primary producer biomass occurred at depths of 2–4 m, with very little biomass observed beyond 4 m deep. Charophyte and vascular macrophyte abundances displayed consistent patterns related to distance from the mouth of the Saginaw River. FA abundance also displayed such patterns, but they reversed between 2009 and 2010. Macrophytic benthic primary producer communities were generally dominated by charophytes. Three genera of vascular macrophytes, including Myriophyllum, were also observed. Filamentous algal communities were composed of a mixture of FA taxa. Ten FA genera were observed, including the red alga Compsopogon. Dominance of Compsopogon was related to low water clarity and low TP. Biomass-based benthic production estimates indicated that charophytes and FA strongly dominated macroscopic benthic production; production of vascular macrophytes was relatively low. The observed relationships of abundance and environmental conditions suggested regulation of benthic producer biomass by a shifting mosaic of substratum, nutrient, and light availabilities. The diverse nature of the benthic producer community could complicate understanding and management of excess benthic biomass and beach fouling in Saginaw Bay.  相似文献   

19.
Identifying mechanisms influencing early-life survival may elucidate recruitment variability of fish populations. Yellow perch (Perca flavescens), are economically and ecologically important in Saginaw Bay, Lake Huron, but have recently experienced low recruitment despite strong production of age-0 fish. Recent year classes have been characterized by slow first-year growth, as indexed by fall size of age-0 yellow perch; however, seasonal growth patterns and accompanying diet and survivorship patterns have not been documented for age-0 yellow perch in Saginaw Bay. To this end, we collected age-0 yellow perch weekly (larvae) and monthly (juveniles) throughout the first year of life during 2009 and 2010 to track changes in growth and diet composition. We also evaluated predation and over-winter energy-loss as potential mechanisms of size-selective mortality. Yellow perch growth, energy accumulation and size-specific condition decreased during late summer and fall. During larval and juvenile stages, predominant components of yellow perch diets transitioned from copepods to Daphnia and other zooplankton; however, we observed only weak ontogenetic shifts toward benthic prey. Smaller yellow perch a) were preferentially preyed upon by walleye (the bay's main piscivore) and b) displayed lower mass-specific energy content, potentially increasing overwinter starvation risk, suggesting that slow growth increases mortality risk. Our results are consistent with the hypothesis that recruitment dynamics are influenced by an interplay of size-selective mortality and diet-induced reductions in growth.  相似文献   

20.
Between 1991 and 1993, Saginaw Bay experienced an invasion by zebra mussels, Dreissena polymorpha, which caused a significant perturbation to the ecosystem. Blooms of Microcystis, a toxin-producing blue-green alga, became re-established in the bay after the zebra mussel invasion. Microcystis blooms had all but been eliminated in the early 1980s with controls on external phosphorus loadings, but have re-occurred in the bay most summers since 1992. An apparent paradox is that these recent Microcystis blooms have not been accompanied by increases in external phosphorus loadings. An ecosystem model was used to investigate whether the re-occurrence of Microcystis could be due to changes caused by zebra mussels that impacted phytoplankton community structure and/or internal phosphorus dynamics. The model was first used to establish baseline conditions in Saginaw Bay for 1991, before zebra mussels significantly impacted the system. The baseline model was then used to investigate: (1) the composite impacts of zebra mussels with average 1991–1995 densities; (2) sensitivity to changes in zebra mussel densities and external phosphorus loadings; and (3) three hypotheses on potential causative factors for proliferation of blue-green algae. Under the model assumptions, selective rejection of blue-green algae by zebra mussels appears to be a necessary factor in the enhancement of blue-green production in the presence of zebra mussels. Enhancement also appears to depend on the increased sediment-water phosphorus flux associated with the presence of zebra mussels, the magnitude of zebra mussel densities, and the distribution of zebra mussel densities among different age groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号