首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Microemulsification and blending are two viscosity-modifying techniques of vegetable oils for direct use with diesel engine. In this study, alcohol blends are mixtures of ethanol, diesel, and palm-oil biodiesel while microemulsion biofuels are thermodynamically stable, clear, and single-phase mixtures of diesel, palm oil, and ethanol stabilized by surfactants and cosurfactants. Although there are many studies on biofuels lately, there is limited research on using biodiesel as a surfactant in microemulsion formulations and applied on engine performance at different engine loads. Therefore, the objectives are to investigate phase stability and fuel properties of formulated biofuels (various blends and microemulsions), to determine the engine performance at different engine loads (no load, and from 0.5 to 2.0 kW), and to estimate laboratory-scale cost of the selected biofuels compared to diesel and biodiesel. The results showed that phase stability and fuel properties of selected microemulsion biofuels are comparable to diesel and biodiesel. These microemulsion biofuels can be applied to the diesel engine at different loads while diesel-ethanol blends and palm-oil-biodiesel-ethanol blends cannot be. It was found that the energy efficiencies of the system using microemulsion biofuels were slightly lower than the average energy efficiency of diesel engine. From this study, it can be summarized that microemulsion biofuels can be formulated using palm-oil biodiesel (palm-oil methyl ester) as a bio-based surfactant and they can be considered as environmentally-friendly alternatives to diesel and biodiesel. However, cost considerations showed that the raw materials should be locally available to reduce additional costs of microemulsion biofuels.  相似文献   

2.
Biodiesel has attracted considerable attention as a renewable, biodegradable, and nontoxic fuel and can contribute to solving the energy problems, significantly reducing the emission of gases which cause global warming.The first stage of this work was to simulate different alternative processes for producing biodiesel. The method used for the production of biodiesel is the transesterification of vegetable oils with an alcohol in the presence of a catalyst. The raw materials used were palm oils and waste cooking oil.The second stage was a life cycle analysis for all alternatives under study, followed by an economic analysis for the alternatives that present minor impacts and which are more promising from an economic point of view. Finally, we proceeded to compare the different alternatives from both the point of view of life cycle and economic analysis.The feasibility of all processes was proven and the biodiesel obtained had good specifications.From the standpoint of life cycle analysis, the best alternative was the process of alkaline catalysis with acid pre-treatment for waste cooking oil.The economic analysis was done to the previous mentioned process and to the process that uses raw virgin oils, methanol, and sodium hydroxide. This process has lower investment costs but the process of alkaline catalysis with acid pre-treatment, whose main raw material is waste oil, is much more profitable and has less environmental impacts.  相似文献   

3.
酵母油脂及用于生物柴油制备研究进展   总被引:1,自引:0,他引:1       下载免费PDF全文
张国玲  杜伟  刘德华 《化工进展》2013,32(4):791-798
油脂酵母具有高产油能力,并且所积累油脂的主要成分与植物油脂相似,可作为生物柴油制备的原料。本文对影响酵母油脂合成的关键酶、基因、碳源以及酵母油脂在生物柴油制备中的研究进展进行了综述,认为ATP∶柠檬酸裂解酶和苹果酸酶是酵母油脂合成代谢途径中的关键酶,另外,LRO1、DGA1和ARE基因也被认为同油脂合成有着紧密联系。对酵母油脂用于生物柴油生产的前景进行了展望:利用廉价碳源如甘油、能源作物以及木质纤维素水解液等培养酵母,可有效降低生产成本。在不同催化方法下,酵母油脂均可用于制备生物柴油,这对进一步研究生物柴油的生产应用有着重要意义。  相似文献   

4.
Biofuels enjoy nowadays increased public and scientific attention, driven by key factors such as volatile oil price, the need for increased energy security, and concerns over greenhouse gas emissions from fossil fuels. However, in order to make biofuels a competitive alternative, the cost of production has to be significantly reduced by using enhanced process technologies. Distillation is heavily involved in the production processes of biofuels—taking the blame for the high energy requirements that have a negative impact on the operating costs. Dividing‐wall column (DWC) is one of the best examples of proven industrial process intensification technology in distillation, as it allows significantly lower investment and operating costs while also reducing the number of equipment units and the carbon footprint. This work presents an overview of novel applications using the DWC technology in the production of the most important biofuels, by employing multi‐component separations, azeotropic, extractive or reactive distillation in a DWC: enhanced methanol recovery and glycerol separation in biodiesel production, synthesis of fatty acid methyl esters and dimethyl ether (DME) by reactive distillation, integrated DME purification and methanol or CO2 recovery in the dimethyl ether process, as well as bioethanol concentration and dehydration. The industrially relevant case studies presented here show that significant energy savings are possible (ranging from ∼20 to 60%) while simplifying the processes by using less equipment that requires a lower plant footprint. Remarkably, in most cases there is also the possibility of revamping existing plants producing biofuels, and thus reusing the already available equipment. © 2013 Society of Chemical Industry  相似文献   

5.
The main problem with biodiesel is the high cost of oils made from oleaginous crops. For this reason, various raw materials have been analysed with a view to reducing production costs and obtaining a product that can compete with the price of petrodiesel. Recycled oil is one of the most promising alternatives in the production of biodiesel because not only is the cheapest raw material but it also avoids the expense of treating the oil as a residue.Another way to reduce costs is to make the process more economical. Conventional technology uses sodium hydroxide as the basic catalyst and large-scale batch reactors, whose mechanical agitation requires high energy consumption due to residence times of at least 60 min and temperatures of 60 °C.In this paper we use a recycled pretreated oil to compare conventional transesterification with continuous transesterification in a tubular reactor. In this reactor the reactants (oil, methanol and sodium hydroxide) flow through a helicoidal tube submerged in a heating bath at 60 °C. The reactor has five outlets distributed non-uniformly to enable samples to be taken at different reaction times. This is to reduce the reaction time and avoid the need for mechanical agitation. With the aim of improving the quality of the biodiesel obtained, we varied the helicoidal system by incorporating a static micromixer and supplying energy in the form of ultrasound from the heating bath. This reactor produced biodiesel and glycerine at compositions roughly equal to those obtained in the batch process (89% FAME content at 75 min) but did so continuously (2.5 mL/min) and just 13 min after the reactants were integrated in a single line using a T device. Both the oil and the biodiesel were characterized and analysed in accordance with European standard UNE EN14214 for biodiesel.  相似文献   

6.
Synthesis of biodiesel is performed mainly by chemical catalysis, but can also be performed by enzymatic or microbial methods, and these might play an important role in future substitution of petroleum‐based diesel. To discover sustainable, economically attractive biotechnological processes for biodiesel synthesis, close cooperation between different disciplines is needed. Currently, lipases are the enzymes of choice for the synthesis of fatty acid esters (FAE) from fats and oils, yielding biodiesel with the methyl esters (FAME) as the most important product. More recently, the direct production of FAE using engineered whole cell microorganism has also been described (MicroDiesel). Current enzymatic processes are still hampered by the high costs of the biocatalyst, but significant progress has recently been made leading to the first industrial enzymatic biodiesel production. Enzymatic biodiesel production is mostly attractive because of the starting materials (waste frying oils, oils with high water content, etc.), for which conventional chemical interesterification can hardly be applied.  相似文献   

7.
The high energy requirements in primary steelmaking make this industrial sector a major contributor to the global emissions of carbon dioxide. Ways to suppress the use of fossil reductants and the emissions from the processes should therefore be developed. The present work applies simulation and optimization for studying the economic feasibility of recycling blast furnace top gas to the combustion zones after CO2 stripping. The study comprises the unit processes in an integrated steel plant, paying special attention to the blast furnace and the preheating of the blast or the recycled top gas. The system is optimized with nonlinear programming with respect to some central variables under different CO2 sequestration and emission costs, which yields information about the economic feasibility of the concept. It is demonstrated that the optimal states of the plant show complex transitions, where the costs play a decisive role. It is also shown that hot gas recycling with CO2 capture and storage would dramatically reduce the harmful emissions from the process. The conditions under which top gas recycling is economically feasible are also reported, as well as the effect of omitting oil injection in a blast furnace with top gas recycling.  相似文献   

8.
BACKGROUND: The byproducts from shrimp processing are heads and shells which contain a wealth of carbon and could be converted into oils via oleaginous microorganisms. The objective of this investigation was to determine the feasibility of using oleaginous microorganisms to convert N‐acetylglucosamine (GlcNAc), the major carbohydrate of the hydrolysate of shrimp processing waste, to triacylglycerols as a biodiesel feedstock. RESULTS: Screening experiments were conducted among Rhodotorula glutinis, Rhodococcus opacus and Cryptococcus curvatus using GlcNAc as sole carbon and energy source at 30 °C. All three microorganisms were found to grow well on GlcNAc, but the lipid contents in the cells were consistently low (lower than 5%) in the growth phase. However, lipid accumulation by C. curvatus was greatly enhanced upon entering the death phase in the absence of GlcNAc and the lipid content increased to 28.4% at 167.7 h. This indicated that C. curvatus was the optimal tested microorganism for the production of microbial oils from GlcNAc. Phosphate was further evaluated on the growth and lipid production by C. curvatus from GlcNAc. Results indicated that the yields of both biomass during growth phase and lipids at death phase increased with the increase of the ratio of C to P. But the fatty acid profiles of the accumulated lipids did not change significantly. CONCLUSION: Results indicated that shrimp processing waste could be utilized to produce oils as a biodiesel feedstock. The results could be applied to maximize production of oils from shrimp processing waste. Copyright © 2011 Society of Chemical Industry  相似文献   

9.
Research on different alternative liquid fuels is rapidly growing because of the environmental concerns and depletion of fossil fuels. As the world confronts a reported food shortage and rising fuel prices, researchers are engaged in developing biofuels that would not convert food crops into energy. In addition, it is apparent that the demand for biodiesel is expected to rise over the coming years. To date, many edible oils are used for biodiesel production. Thus, increasing demand of biodiesel will have a direct impact on food shortage. This underlines the need to use waste materials for biodiesel preparation. In this regard, lipid fraction which can be obtained after hydrolysis of food waste with an enzyme system accumulated in the solid state fungal culture is considered inedible and can be used as a potential source to produce biodiesel.  相似文献   

10.
First generation biofuels are widely available because the production technologies are well developed. However, growth of the raw materials conflicts with food security, so that first‐ generation biofuels are not so promising. The second generation of biofuels will not compete directly with food but requires several energy intensive processes to produce them, and also increases land‐use change, which reduces its environmental and economic feasibility. The production of third‐generation biofuels avoids the issues met with first‐ and second‐ generation biofuels, namely food–fuel competition, land‐use change, etc., and is thus considered a viable alternative energy resource. On all dimensions of sustainability (environmental, social and economical), a life cycle assessment approach is most relevant to avoid issues in problem shifting. The utilization of organic waste and carbon dioxide in flue gases for the production of biomass further increases the sustainability of third generation biofuels, as it minimizes greenhouse gas emissions and disposal problems. Copyright © 2011 Society of Chemical Industry  相似文献   

11.
分析了以植物为基础的生物燃料的来源,指出了藻类是生物燃料的最有效来源;重点介绍了藻类生物燃料的巨大潜力,如用于生产生物乙醇、生物柴油、生物制氢争沼气等;并讨论了藻类生物燃料的经济可行性和未来的应用前景.  相似文献   

12.
Biodiesel utilization has been rapidly growing worldwide as the prime alternative to petrodiesel due to a global rise in diesel fuel demand along with hazardous emissions during its thermochemical conversion. Although, several debatable issues including feedstock availability and price, fuel and food competition, changes in land use and greenhouse gas emission have been raised by using edible as well as inedible feedstocks for the production of biodiesel. However, non-crop feedstocks could be a promising alternative. In this article, waste cooking oils have been recommended as a suitable option for biodiesel production bearing in mind the current national situation. The important factors such as the quantity of waste cooking oil produced, crude oil and vegetable oil import expenses, high-speed diesel imports, waste management issues and environmental hazards are considered. Moreover, process simulation and operating cost evaluation of an acid catalyzed biodiesel production unit are also conducted. The simulation results show that the production cost of waste cooking oil-based biodiesel is about 0.66USD·L-1. We believe that the present overview would open new pathways and ideas for the development of biofuels from waste to energy approach in Pakistan.  相似文献   

13.
The rapid decline in fossil fuel reserves in the world, rising oil prices, and growing concerns about the increase in pollutant gas emissions from this type of energy, have led to the exploration of new energy sources for the production of alternative fuels. The use of vegetable oils as a low‐cost raw material for biodiesel production is an effective way to reduce biodiesel costs. This paper reports on the production and biodiesel properties of the seed oils of six native species belonging to different families of plants from the Atlantic Forest in northeast Brazil. The results are compared with those obtained from traditional crops such as soybean and olive. The relative oil content of the seeds ranged from 31.5 to 67.4 %, while the biodiesel yield from these oils ranged from 93.2 to 97.6 wt%. The fatty acid composition is mainly constituted of oleic acid in three species (Cissampelos andromorpha, Rauwolfia grandiflora, and Tabernaemontana flavicans), eicosenoic acid in two species (Serjania caracasana and Serjania salzmanniana) and palmitic acid in Protium heptaphyllum. The physicochemical parameters of oil (density, viscosity, % FFA, and % of linolenic acid) and biodiesel (density, viscosity, acid number, copper strip corrosion, flash point, sulfur content, sulfated ash, water, oxidative stability, free and total glycerin) were in agreement with ASTM 6751 and EN 14214 standards. The fatty acid composition, biodiesel yield, oil, and biodiesel properties of the six native species studied demonstrate the high potential for producing alternative fuel in conventional diesel engines.  相似文献   

14.
The use of biodiesel is rapidly expanding around the world, making it imperative to fully understand the impacts of biodiesel on the diesel combustion process, pollutant formation and exhaust aftertreatment. Because its physical properties and chemical composition are distinctly different from conventional diesel fuel, biodiesel can alter the fuel injection and ignition processes whether neat or in blends. As a consequence, the emissions of NOx and the amount, character and composition of particulate emissions are significantly affected. In this paper, we survey observations from a spectrum of our earlier studies on the impact of biodiesel on diesel combustion, emissions and emission control to provide a summary of the challenges and opportunities that biodiesel can provide.  相似文献   

15.
Oleaginous Scenedesmus sp. was cultivated phototrophically in an open pond for biofuels production. The culture was harvested and subsequently dewatered and dried. The chemical properties of the Scenedesmus sp. lipids were determined as per standard ASTM methods. Biodiesel was synthesized by in situ transesterification from dried biomass using microwave and sonication techniques with tungstated zirconia (WO3/ZrO2) as a solid acid catalyst. In situ transesterification allowed minimizing the requirement of solvents by merging the two steps (i.e. extraction of lipid and conversion to biodiesel) to a single step. The use of a solid catalyst effectively reduces the purification cost of biodiesel due to ease of separation and potential for reuse. The conversion of Scenedesmus sp. lipids to biodiesel was determined by GC. Box–Behnken design was used for optimization of the variables to optimize the biodiesel yield and conversion. The efficiency of the two processes was compared.  相似文献   

16.
Hydrotreating catalysis is becoming a promising alternative to transesterification for the production of biofuels derived from vegetable oils. They have potential advantages with respect to both biodiesel fuels and petroleum-derived diesel fuels in terms of production costs, engine emissions and adaptability to current engine designs, but they have also some limitations which may restrict their capability to replace diesel fuels. Those fuel properties considered the most restrictive ones were measured on different blends of HVO (selected among the variety of names given to these fuels) with a winter ultra low sulfur diesel fuel (in 10, 20, 25, 30, 35, 40, 45, 50, 55, and 75 vol.%) in order to propose some blending strategies to optimize engine performance and emissions, to protect the engine components and to keep the vehicle operability. The results obtained show that the main restrictions are imposed by lubricity and cetane number, and, in case of cold regions, also by cold flow properties. A compromise between lubricity and derived cetane number would lead to a recommendation for low or medium HVO concentrations, and blends with concentrations above 50% would not be recommended. Density and viscosity would not impose direct blending restrictions, although the reductions in density could provide some economic savings and some flexibility to refineries. The loss of heating value per unit volume (and consequently the expected increase in fuel consumption) would be lower than 3% in blends up to 50% in volume. Finally, the sooting tendency of the blends is sharply reduced, indicating lower engine PM emissions and reduced need for regeneration of diesel particulate filters.  相似文献   

17.
Biodiesel fuel has been shown as a clean energy alternative to petroleum diesel. Conventional biodiesel production involves the use of catalyst, which implies high energy consumptions for the separation of both the catalyst and the by-products of the reaction, including those of the undesirable reaction of saponification. Recently, a process involving the use of short-chain alcohols at supercritical conditions has been proposed (Saka-Dadan process); one of the main advantages of that process is that it avoids the need for a catalyst as well as the occurrence of the saponification reaction. However, although the process requires less pieces of equipment than the conventional one, its energy requirements are still high, making biodiesel fuel more expensive than petroleum diesel. This work proposes the use of reactive distillation and thermally coupled reactive distillation configurations to produce biodiesel fuel by the supercritical methanol method. First-order kinetics is used to represent the esterification reaction, obtaining high conversions in a single shell. Both of the configurations proposed reduce energy requirements when compared to the conventional (Saka-Dadan) process. Calculations were also performed to estimate CO2 emissions, thermodynamic efficiency and cost. The thermally coupled reactive distillation configuration shows to be the best alternative in terms of energy consumption, CO2 emissions and thermodynamic efficiency. Further, cost estimations also show that the use of a thermally coupled scheme considerably reduces both utilities and capital costs.  相似文献   

18.
《Fuel Processing Technology》2005,86(10):1087-1096
Semirefined and refined vegetable oils are the predominant feedstocks for the production of biodiesel. However, their relatively high costs render the resulting fuels unable to compete with petroleum-derived fuel. We have investigated the production of fatty acid methyl esters (FAME; biodiesel) from soapstock (SS), a byproduct of edible oil refining that is substantially less expensive than edible-grade refined oils. Multiple approaches were taken in search of a route to the production of fatty acid methyl esters from soybean soapstock. The most effective method involved the complete saponification of the soapstock followed by acidulation using methods similar to those presently employed in industry. This resulted in an acid oil with a free fatty acid (FFA) content greater than 90%. These fatty acids were efficiently converted to methyl esters by acid-catalyzed esterification. The fatty acid composition of the resulting ester product reflected that of soy soapstock and was largely similar to that of soybean oil. Following a simple washing protocol, this preparation met the established specifications for biodiesel of the American Society for Testing and Materials. Engine emissions and performance during operation on soy soapstock biodiesel were comparable to those on biodiesel from soy oil. An economic analysis suggested that the production cost of soapstock biodiesel would be approximately US$ 0.41/l, a 25% reduction relative to the estimated cost of biodiesel produced from soy oil.  相似文献   

19.
The fossil fuel reserves are depleting at a more rapid rate as a result of the population growth and the ensuing energy utilization. Biodiesel is a mixture of fatty acid methyl esters produced from the transesterification of plant oils or animal fats. Moreover, the source of raw materials and manufacturing costs have become the major hurdle in the commercialization of biodiesel; thus, alternative sources such as the use of waste oils and non-edible oils together with biodiesel production techniques have long been considered. Selecting an appropriate feedstock and increasing production yield are two important approaches to decrease the costs of biodiesel production. Typically, biodiesel, which operates with electrical or conventional heating to generate high efficiency of the product, consumes a huge amount of power in a long reaction time. In contrast, chemical reactions speed up by microwave irradiation which results in producing high yields of product in a shorter chemical reaction time. In this extensive article, an effort has been made to review the use of microwave technology including multi-feedstock and recent studies on microwave-assisted heterogeneously catalyzed processes for biodiesel production. The heterogeneous catalyst performance has also been covered, including the measurement of their pysico-chemical properties. The microwave irradiation used for the synthesis of biodiesel is also included. In addition, the reaction variables impacting the transesterification process, such as heating system, microwave power, type and amount of heterogeneous catalyst, oil/methanol molar ratio, reaction time, temperature and mixing intensity, are covered. The final part of this article will cover the details of previously performed work on heterogeneous catalysts. Finally, energy balances for the traditional and microwave-based processes, conclusions, and recommendation on the topic are presented. The aim this article is to focus on recent studies on microwave-assisted heterogeneously catalyzed processes.  相似文献   

20.
Biodiesel is one of the more promising alternative clean fuels to fossil fuel, which can reduce the emissions of fossil fuel burning, and possibly resolve the energy crisis caused by the exhaustion of petroleum resources in the near future. The burning of biodiesel emits much less gaseous emissions and particulate matter primarily because of its dominant combustion efficiency. However, the high oxygen content in biodiesel not only promotes the burning process but also enhances NOx formation when biodiesel is used as fuel. Biodiesel emulsion and the additive of NOx-inhibitor agent are considered to reduce levels of NOx emissions in this experimental study. The biodiesel was produced by transesterification reaction accompanied with peroxidation process. A three-phase biodiesel emulsion of oil-in water drops-in oil (O/W/O) and an O/W/O biodiesel emulsion containing aqueous ammonia were prepared afterwards. The effect of the existence of NOx-inhibitor agent on the fuel properties and the emulsion characteristics of the O/W/O biodiesel emulsions were investigated. The experimental results show that the burning of the O/W/O biodiesel emulsion and the O/W/O biodiesel emulsion containing aqueous ammonia had larger fraction of fuel burnt and thus larger heat release than the neat biodiesel if water content is not considered for the calculation of heating value. The addition of aqueous ammonia within the dispersed phase of the O/W/O biodiesel emulsion appeared to deteriorate the emulsification characteristics. A smaller quantity of emulsion and greater kinematic viscosity were formed while a larger carbon residue and actual reaction-heat release also appeared for this O/W/O biodiesel emulsion. Aqueous ammonia in the O/W/O biodiesel emulsion produces a higher pH value as well. In addition, the number as well as the volumetric fraction of the dispersed water droplets is reduced for the O/W/O biodiesel emulsion that contains aqueous ammonia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号