首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stem cells including embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs) and adult stem cells (ASCs) are able to repair/replace damaged or degenerative tissues and improve functional recovery in experimental model and clinical trials. However, there are still many limitations and unresolved problems regarding stem cell therapy in terms of ethical barriers, immune rejection, tumorigenicity, and cell sources. By reviewing recent literatures and our related works, human amnion-derived stem cells (hADSCs) including human amniotic mesenchymal stem cells (hAMSCs) and human amniotic epithelial stem cells (hAESCs) have shown considerable advantages over other stem cells. In this review, we first described the biological characteristics and advantages of hADSCs, especially for their high pluripotency and immunomodulatory effects. Then, we summarized the therapeutic applications and recent progresses of hADSCs in treating various diseases for preclinical research and clinical trials. In addition, the possible mechanisms and the challenges of hADSCs applications have been also discussed. Finally, we highlighted the properties of hADSCs as a promising source of stem cells for cell therapy and regenerative medicine and pointed out the perspectives for the directions of hADSCs applications clinically.  相似文献   

2.
Induced pluripotent stem cells (iPSCs) are a self-renewable pool of cells derived from an organism’s somatic cells. These can then be programmed to other cell types, including neurons. Use of iPSCs in research has been two-fold as they have been used for human disease modelling as well as for the possibility to generate new therapies. Particularly in complex human diseases, such as neurodegenerative diseases, iPSCs can give advantages over traditional animal models in that they more accurately represent the human genome. Additionally, patient-derived cells can be modified using gene editing technology and further transplanted to the brain. Glial cells have recently become important avenues of research in the field of neurodegenerative diseases, for example, in Alzheimer’s disease and Parkinson’s disease. This review focuses on using glial cells (astrocytes, microglia, and oligodendrocytes) derived from human iPSCs in order to give a better understanding of how these cells contribute to neurodegenerative disease pathology. Using glia iPSCs in in vitro cell culture, cerebral organoids, and intracranial transplantation may give us future insight into both more accurate models and disease-modifying therapies.  相似文献   

3.
The gingival tissue can be collected in an easy way and represent an accessible source to isolate gingival-derived mesenchymal stem cells (GMSCs). GMSCs are a subpopulation of dental-derived mesenchymal stem cells that show the mesenchymal stem cells (MSCs) features, such as differentiation abilities and immunomodulatory properties. Dental-derived stem cells are also expandable in vitro with genomic stability and the possibility to maintain the stemness properties over a prolonged period of passages. Moreover, several preclinical studies have documented that the extracellular vesicles (EVs) released from GMSCs possess similar biological functions and therapeutic effects. The EVs may represent a promising tool in the cell-free regenerative therapy approach. The present review paper summarized the GMSCs, their multi-lineage differentiation capacities, immunomodulatory features, and the potential use in the treatment of several diseases in order to stimulate tissue regeneration. GMSCs should be considered a good stem cell source for potential applications in tissue engineering and regenerative dentistry.  相似文献   

4.
Multiple sclerosis (MS) is a neurological disorder of autoimmune aetiology. Experimental therapies with the use of mesenchymal stem cells (MSCs) have emerged as a response to the unmet need for new treatment options. The unique immunomodulatory features of stem cells obtained from Wharton’s jelly (WJ-MSCs) make them an interesting research and therapeutic model. Most WJ-MSCs transplants for multiple sclerosis use intrathecal administration. We studied the effect of cerebrospinal fluid (CSF) obtained from MS patients on the secretory activity of WJ-MSCs and broaden this observation with WJ-MSCs interactions with human oligodendroglia cell line (OLs). Analysis of the WJ-MSCs secretory activity with use of Bio-Plex Pro™ Human Cytokine confirmed significant and diverse immunomodulatory potential. Our data reveal rich WJ-MSCs secretome with markedly increased levels of IL-6, IL-8, IP-10 and MCP-1 synthesis and a favourable profile of growth factors. The addition of MS CSF to the WJ-MSCs culture caused depletion of most proteins measured, only IL-12, RANTES and GM-CSF levels were increased. Most cytokines and chemokines decreased their concentrations in WJ-MSCs co-cultured with OLs, only eotaxin and RANTES levels were slightly increased. These results emphasize the spectrum of the immunomodulatory properties of WJ-MSCs and show how those effects can be modulated depending on the transplantation milieu.  相似文献   

5.
Pigs have great potential to provide preclinical models for human disease in translational research because of their similarities with humans. In this regard, porcine pluripotent cells, which are able to differentiate into cells of all three primary germ layers, might be a suitable animal model for further development of regenerative medicine. Here, we describe the current state of knowledge on apoptosis in pluripotent cells including inner cell mass (ICM), epiblast, embryonic stem cells (ESCs), and induced pluripotent stem cells (iPSCs). Information is focused on the apoptotic phenomenon in pluripotency, maintenance, and differentiation of pluripotent stem cells and reprogramming of somatic cells in pigs. Additionally, this review examines the multiple roles of apoptosis and summarizes recent progress in porcine pluripotent cells.  相似文献   

6.
Accumulating studies demonstrate the morphological and functional diversity of astrocytes, a subtype of glial cells in the central nervous system. Animal models are instrumental in advancing our understanding of the role of astrocytes in brain development and their contribution to neurological disease; however, substantial interspecies differences exist between rodent and human astrocytes, underscoring the importance of studying human astrocytes. Human pluripotent stem cell differentiation approaches allow the study of patient-specific astrocytes in the etiology of neurological disorders. In this review, we summarize the structural and functional properties of astrocytes, including the unique features of human astrocytes; demonstrate the necessity of the stem cell platform; and discuss how this platform has been applied to the research of neurodevelopmental and neuropsychiatric diseases.  相似文献   

7.
8.
Degenerative retinal disease is one of the major causes of vision loss around the world. The past several decades have witnessed emerging development of stem cell treatment for retinal disease. Nevertheless, sourcing stem cells remains controversial due to ethical concerns and their rarity. Furthermore, induced pluripotent stem cells (iPSCs) and mesenchymal stem cells (MSCs) are both isolated from patients’ mature tissues; thus, issues such as avoiding moral controversy and adverse events related to immunosuppression and obtaining a large number of cells have opened a new era in regenerative medicine. This review focuses on the current application and development, clinical trials, and latest research of stem cell therapy, as well as its limitations and future directions.  相似文献   

9.
Human dental pulp stem cells (hDPSCs) are some of the most promising stem cell types for regenerative therapies given their ability to grow in the absence of serum and their realistic possibility to be used in autologous grafts. In this review, we describe the particular advantages of hDPSCs for neuroregenerative cell therapies. We thoroughly discuss the knowledge about their embryonic origin and characteristics of their postnatal niche, as well as the current status of cell culture protocols to maximize their multilineage differentiation potential, highlighting some common issues when assessing neuronal differentiation fates of hDPSCs. We also review the recent progress on neuroprotective and immunomodulatory capacity of hDPSCs and their secreted extracellular vesicles, as well as their combination with scaffold materials to improve their functional integration on the injured central nervous system (CNS) and peripheral nervous system (PNS). Finally, we offer some perspectives on the current and possible future applications of hDPSCs in neuroregenerative cell therapies.  相似文献   

10.
Mesenchymal stem/stromal cells (MSCs) are widely described in the context of their regenerative and immunomodulatory activity. MSCs are isolated from various tissues and organs. The most frequently described sources are bone marrow and adipose tissue. As stem cells, MSCs are able to differentiate into other cell lineages, but they are usually reported with respect to their paracrine potential. In this review, we focus on MSCs derived from adipose tissue (AT-MSCs) and their secretome in regeneration processes. Special attention is given to the contribution of AT-MSCs and their derivatives to angiogenic processes described mainly in the context of angiogenic dysfunction. Finally, we present clinical trials registered to date that concern the application of AT-MSCs and their secretome in various medical conditions.  相似文献   

11.
Multiple Sclerosis (MS) is an inflammatory demyelinating neurodegenerative disorder of the brain and spinal cord that causes significant disability in young adults. Although the precise aetiopathogenesis of MS remains unresolved, its pathological hallmarks include inflammation, demyelination, axonal injury (acute and chronic), astrogliosis and variable remyelination. Despite major recent advances in therapeutics for the early stage of the disease there are currently no disease modifying treatments for the progressive stage of disease, whose pathological substrate is axonal degeneration. This represents the great and unmet clinical need in MS. Against this background, human stem cells offer promise both to improve understanding of disease mechanism(s) through in-vitro modeling as well as potentially direct use to supplement and promote remyelination, an endogenous reparative process where entire myelin sheaths are restored to demyelinated axons. Conceptually, stem cells can act directly to myelinate axons or indirectly through different mechanisms to promote endogenous repair; importantly these two mechanisms of action are not mutually exclusive. We propose that discovery of novel methods to invoke or enhance remyelination in MS may be the most effective therapeutic strategy to limit axonal damage and instigate restoration of structure and function in this debilitating condition. Human stem cell derived neurons and glia, including patient specific cells derived through reprogramming, provide an unprecedented experimental system to model MS “in a dish” as well as enable high-throughput drug discovery. Finally, we speculate upon the potential role for stem cell based therapies in MS.  相似文献   

12.
Current treatment of primary and secondary glomerulopathies is hampered by many limits and a significant proportion of these disorders still evolves towards end-stage renal disease. A possible answer to this unmet challenge could be represented by therapies with stem cells, which include a variety of progenitor cell types derived from embryonic or adult tissues. Stem cell self-renewal and multi-lineage differentiation ability explain their potential to protect and regenerate injured cells, including kidney tubular cells, podocytes and endothelial cells. In addition, a broad spectrum of anti-inflammatory and immunomodulatory actions appears to interfere with the pathogenic mechanisms of glomerulonephritis. Of note, mesenchymal stromal cells have been particularly investigated as therapy for Lupus Nephritis and Diabetic Nephropathy, whereas initial evidence suggest their beneficial effects in primary glomerulopathies such as IgA nephritis. Extracellular vesicles mediate a complex intercellular communication network, shuttling proteins, nucleic acids and other bioactive molecules from origin to target cells to modulate their functions. Stem cell-derived extracellular vesicles recapitulate beneficial cytoprotective, reparative and immunomodulatory properties of parental cells and are increasingly recognized as a cell-free alternative to stem cell-based therapies for different diseases including glomerulonephritis, also considering the low risk for potential adverse effects such as maldifferentiation and tumorigenesis. We herein summarize the renoprotective potential of therapies with stem cells and extracellular vesicles derived from progenitor cells in glomerulonephritis, with a focus on their different mechanisms of actions. Technological progress and growing knowledge are paving the way for wider clinical application of regenerative medicine to primary and secondary glomerulonephritis: this multi-level, pleiotropic therapy may open new scenarios overcoming the limits and side effects of traditional treatments, although the promising results of experimental models need to be confirmed in the clinical setting.  相似文献   

13.
Rapid growth of the geriatric population has been made possible with advancements in pharmaceutical and health sciences. Hence, age-associated diseases are becoming more common. Aging encompasses deterioration of the immune system, known as immunosenescence. Dysregulation of the immune cell production, differentiation, and functioning lead to a chronic subclinical inflammatory state termed inflammaging. The hallmarks of the aging immune system are decreased naïve cells, increased memory cells, and increased serum levels of pro-inflammatory cytokines. Mesenchymal stem cell (MSC) transplantation is a promising solution to halt immunosenescence as the cells have excellent immunomodulatory functions and low immunogenicity. This review compiles the present knowledge of the causes and changes of the aging immune system and the potential of MSC transplantation as a regenerative therapy for immunosenescence.  相似文献   

14.
A subpopulation of mesenchymal stem cells, developmentally derived from multipotent neural crest cells that form multiple facial tissues, resides within the dental pulp of human teeth. These stem cells show high proliferative capacity in vitro and are multipotent, including adipogenic, myogenic, osteogenic, chondrogenic, and neurogenic potential. Teeth containing viable cells are harvested via minimally invasive procedures, based on various clinical diagnoses, but then usually discarded as medical waste, indicating the relatively low ethical considerations to reuse these cells for medical applications. Previous studies have demonstrated that stem cells derived from healthy subjects are an excellent source for cell-based medicine, tissue regeneration, and bioengineering. Furthermore, stem cells donated by patients affected by genetic disorders can serve as in vitro models of disease-specific genetic variants, indicating additional applications of these stem cells with high plasticity. This review discusses the benefits, limitations, and perspectives of patient-derived dental pulp stem cells as alternatives that may complement other excellent, yet incomplete stem cell models, such as induced pluripotent stem cells, together with our recent data.  相似文献   

15.
Background: Neuroinflammation is involved in neuronal cell death that occurs in neurodegenerative diseases such as Alzheimer’s disease (AD). Microglia play important roles in regulating the brain amyloid beta (Aβ) levels, so immunomodulatory properties exerted by mesenchymal stem cells may be exploited to treat this pathology. The evidence suggests that the mechanism of action of human amniotic fluid stem cells (hAFSCs) is through their secretome, which includes exosomes (exo). Methods: We examined the effect of exosomes derived from human amniotic fluid stem cells (hAFSCs-exo) on activated BV-2 microglia cells by lipopolysaccharide (LPS) as a neuroinflammation model. To investigate the exo effect on the interplay between AD neurons and microglia, SH-SY5Y neuroblastoma cells treated with Aβ were exposed to a conditioned medium (CM) obtained from activated BV-2 or co-culture systems. Results: We found that the upregulation of the markers of pro-inflammatory microglia was prevented when exposed to hAFSC-exo whereas the markers of the anti-inflammatory macrophage phenotype were not affected. Interestingly, the hAFSC-exo pretreatment significantly inhibited the oxidative stress rise and apoptosis occurring in the neurons in presence of both microglia and Aβ. Conclusion: We demonstrated that hAFSC-exo mitigated an inflammatory injury caused by microglia and significantly recovered the neurotoxicity, suggesting that hAFSC-exo may be a potential therapeutic agent for inflammation-related neurological conditions, including AD.  相似文献   

16.
Application of mesenchymal stem cells (MSC) in regenerative therapeutic procedures is becoming an increasingly important topic in medicine. Since the first isolation of dental tissue-derived MSC, there has been an intense investigation on the characteristics and potentials of these cells in regenerative dentistry. Their multidifferentiation potential, self-renewal capacity, and easy accessibility give them a key role in stem cell-based therapy. So far, several different dental stem cell types have been discovered and their potential usage is found in most of the major dental medicine branches. These cells are also researched in multiple fields of medicine for the treatment of degenerative and inflammatory diseases. In this review, we summarized dental MSC sources and analyzed their treatment modalities with particular emphasis on temporomandibular joint osteoarthritis (TMJ OA).  相似文献   

17.
近年来,通过外源导入特定的转录因子,将体细胞重编程为类似胚胎干细胞(ESCs)潜能的诱导多能干细胞(iPSCs)掀起了干细胞研究的又一热潮,然而重编程效率低和安全性等问题严重阻碍着其临床应用.太空环境对成体干细胞分化潜能的影响是航天员生理变化的因素之一,具有类似ESCs全能性的iPSCs将为发育生理学及再生医学研究带来全新的视角.综述了iPSCs的研究进展,重点阐述提高安全性和重编程效率的方法和应用研究现状,并探讨了其在航天医学领域中的应用前景.  相似文献   

18.
Stem cell‐derived products have the potential to represent promising therapeutic approaches for the treatment of a wide range of conditions. Neurodegenerative diseases, like Parkinson's disease or Huntington's disease, neurological disorders, cardiac failure, and blood disorders, among others, may one day be treated using cellular therapies and regenerative medicine approaches based on stem cells. Furthermore, owing to the potential positive impact in healthcare systems, translation of stem cell technologies into clinical applications will bring a broad social and economic advantage worldwide. However, to fully realize this potential, advanced bioprocessing systems are needed to deliver sufficient numbers of cells in compliance with stringent regulatory landscapes and that can be used in a safe and effective manner. This review presents and summarizes recent advancements in the field of stem cell engineering, in particular novel technologies for the interrogation of stem cell fate and systems for the robust manufacturing of cells under standardized, reproducible and strictly controlled conditions. © 2013 Society of Chemical Industry  相似文献   

19.
Generation of relevant and robust models for neurological disorders is of main importance for both target identification and drug discovery. The non-cell autonomous effects of glial cells on neurons have been described in a broad range of neurodegenerative and neurodevelopmental disorders, pointing to neuroglial interactions as novel alternative targets for therapeutics development. Interestingly, the recent breakthrough discovery of human induced pluripotent stem cells (hiPSCs) has opened a new road for studying neurological and neurodevelopmental disorders “in a dish”. Here, we provide an overview of the generation and modeling of both neuronal and glial cells from human iPSCs and a brief synthesis of recent work investigating neuroglial interactions using hiPSCs in a pathophysiological context.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号