首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Intermetallic TiMn2 compound was employed for improving the de/rehydrogenation kinetics behaviors of MgH2 powders. The metal hydride powders, obtained after 200 h of reactive ball milling was doped with 10 wt% TiMn2 powders and high-energy ball milled under pressurized hydrogen of 70 bar for 50 h. The cold-pressing technique was used to consolidate them into 36-green buttons with 12 mm in diameter. During consolidation, the hard TiMn2 spherical powders deeply embedded into MgH2 matrix to form homogeneous nanocomposite bulk material. The apparent activation energies of hydrogenation and dehydrogenation for the fabricated buttons were 19.3 kJ/mol and 82.9 kJ/mol, respectively. The present MgH2/10 wt% TiMn2 nanocomposite binary system possessed superior hydrogenation/dehydrogenation kinetics at 225 °C to absorb/desorb 5.1 wt% hydrogen at 10 bar/200 mbar H2 within 100 s and 400 s, respectively. This new system revealed good cyclability of achieving 414 cycles within 600 h continuously without degradations. For the present study, the consolidated buttons were used as solid-state hydrogen storage for feeding proton-exchange membrane fuel cell through a house made Ti-reactor at 250 °C. This nanocomposite system possessed good capability for providing the fuel cell with hydrogen flow at an average rate of 150 ml/min. The average current and voltage outputs were 3 A and 5.5 V, respectively.  相似文献   

2.
Pure magnesium powders were ball milled under a hydrogen pressure of 50 bar at room temperature, using reactive ball milling (RBM) approach. The results have shown that a single stable phase of β-MgH2 is obtained upon RBM for 25 h. Increasing the RBM time leads to a significant decreasing on the grain size and an increase in the iron contamination that were introduced to the powders upon using hard steel milling tools. Remarkable changes in the transformed mass fractions of β-MgH2 phase to a metastable γ-MgH2 phase with increasing the RBM time could be detected. Cyclic β-γ-β phase transformations were observed several times upon changing the RBM time. After 200 h of RBM time, the decomposition temperature and activation energy were recorded to be 399 °C and 131 kJ/mol, respectively. Moreover, the times required for complete absorption and desorption of 7 wt.% of hydrogen at 250 °C were recorded to be 3140 s and 35,207 s under 10 and 0 bar, respectively. At 300 °C, the powders that were obtained upon RBM time for 200 h possess excellent hydrogenation properties for any pure MgH2 system, indexed by high hydrogen storage capacity (7.54 wt.%) with complete 600 absorption/desorption cycles. Improvements of hydrogenation/dehydrogenation kinetics are attributed to the presence of γ-phase, the existence of Fe contamination and the nanocrystallinity of the ball milled powders.  相似文献   

3.
Nanostructured MgH2-Ni/Nb2O5 nanocomposite was synthesized by high-energy mechanical alloying. The effect of MgH2 structure, i.e. crystallite size and lattice strain, and the presence of 0.5 mol% Ni and Nb2O5 on the hydrogen-desorption kinetics was investigated. It is shown that the dehydrogenation temperature of MgH2 decreases from 426 °C to 327 °C after 4 h mechanical alloying. Here, the average crystallite size and accumulated lattice strain are 20 nm and 0.9%, respectively. Further improvement in the hydrogen desorption is attained in the presence of Ni and Nb2O5, i.e. the dehydrogenation temperature of MgH2/Ni and MgH2/Nb2O5 is measured to be 230 °C and 220 °C, respectively. Meanwhile, the dehydrogenation starts at 200 °C in MgH2–Ni/Nb2O5 system, revealing synergetic effect of Ni and Nb2O5. The mechanism of the catalytic effect is presented.  相似文献   

4.
MgH2-based nanocomposites were synthesized by high-energy reactive ball milling (RBM) of Mg powder with 0.5–5 mol% of various catalytic additives (nano-Ti, nano-TiO2, and Ti4Fe2Ox suboxide powders) in hydrogen. The additives were shown to facilitate hydrogenation of magnesium during RBM and substantially improve its hydrogen absorption-desorption kinetics. X-ray diffraction analysis showed the formation of nanocrystalline MgH2 and hydrogenation of nano-Ti and Ti4Fe2Ox. The possible reduction of TiO2 during RBM in hydrogen was not observed, which is in agreement with lower hydrogenation capacity of the corresponding composite, 5.7 wt% for Mg + 5 mol% nano-TiO2 compared to 6.5 wt% for Mg + 5 mol% nano-Ti. Hydrogen desorption from the as-prepared composites was studied by Thermal Desorption Spectroscopy (TDS) in vacuum. A significant lowering of the hydrogen desorption temperature of MgH2 by 30–90 °C in the presence of the additives is associated with lowering activation energy from 146 kJ/mol for nanosized MgH2 down to 74 and 67 kJ/mol for MgH2 modified with nano-TiO2 and Ti4Fe2O0.3 additives, respectively. After hydrogen desorption at 300–350 °C, these materials are able to absorb hydrogen even at room temperature. It is shown that nano-structuring and addition of Ti-based catalysts do not decrease thermodynamic stability of MgH2. The thermodynamic parameters, obtained from hydrogen desorption isotherms for the Mg–Ti4Fe2O0.3 nanocomposite, ΔHdes = 76 kJ/mol H2 and ΔSdes = 138 J/K·mol H2, correspond to the reported literature values for pure polycrystalline MgH2. Hydrogen absorption-desorption characteristics of the composites with nano-Ti remain stable during at least 25 cycles, while a gradual decay of the reversible hydrogen capacity occurred in the case of TiO2 and Ti4Fe2Ox additives. Cycling stability of Mg/Ti4Fe2Ox was substantially improved by introduction of 3 wt% graphite into the composite.  相似文献   

5.
The influence of multiple additions of two oxides, Cr2O3 and Nb2O5, as additives on the hydrogen sorption kinetics of MgH2 after milling was investigated. We found that the desorption kinetics of MgH2 were improved more by multiple oxide addition than by single addition. Even for the milled MgH2 micrometric size powders, the high hydrogen capacity with fast kinetics were achieved for the powders after addition of 0.2 mol% Cr2O3 + 1 mol% Nb2O5. For this composition, the hydride desorbed about 5 wt.% hydrogen within 20 min and absorbed about 6 wt.% in 5 min at 300 °C. Furthermore, the desorption temperature was decreased by 100 °C, compared to MgH2 without any oxide addition, and the activation energy for the hydrogen desorption was estimated to be about 185 kJ mol−1, while that for MgH2 without oxide was about 206 kJ mol−1.  相似文献   

6.
In recent works, it was noticed that Mg/MgH2 mixed with additives by high energy ball milling allows temperature reductions of H2 absorption/desorption without necessarily changing thermodynamic properties. Thus, the objective of this work was to investigate which additives, mixed in low fractions with MgH2 powder would act as efficient hydrogen absorption/desorption catalysts at low temperatures, mainly at room temperature (RT). MgH2 mixtures with 2 mol% additives (Fe, Nb2O5, TiAl and TiFe) were prepared by high energy reactive ball milling (RM). MgH2–TiFe mixture showed the best results, both during desorption at 330 °C and absorption at RT. The hydrogen absorption was ≈ 2.67 wt% H2 in 1 h and ≈ 4.44 wt% H2 in 16 h (40% and 67% of maximum theoretical capacity, respectively). The MgH2–TiFe superior performance was attributed to the hydrogen attraction by the created high energy interfaces and strong TiFe catalytic action facilitating the H2 flow during Mg/MgH2 reactions.  相似文献   

7.
In this study, a low-cost biomass charcoal (BC)-based nickel catalyst (Ni/BC) was introduced into the MgH2 system by ball-milling. The study demonstrated that the Ni/BC catalyst significantly improved the hydrogen desorption and absorption kinetics of MgH2. The MgH2 + 10 wt% Ni/BC-3 composite starts to release hydrogen at 187.8 °C, which is 162.2 °C lower than the initial dehydrogenation temperature of pure MgH2. Besides, 6.04 wt% dehydrogenation can be achieved within 3.5 min at 300 °C. After the dehydrogenation is completed, MgH2 + 10 wt% Ni/BC-3 can start to absorb hydrogen even at 30 °C, which achieved the absorption of 5 wt% H2 in 60 min under the condition of 3 MPa hydrogen pressure and 125 °C. The apparent activation energies of dehydrogenation and hydrogen absorption of MgH2 + 10 wt% Ni/BC-3 composites were 82.49 kJ/mol and 23.87 kJ/mol lower than those of pure MgH2, respectively, which indicated that the carbon layer wrapped around MgH2 effectively improved the cycle stability of hydrogen storage materials. Moreover, MgH2 + 10 wt% Ni/BC-3 can still maintain 99% hydrogen storage capacity after 20 cycles. XRD, EDS, SEM and TEM revealed that the Ni/BC catalyst evenly distributed around MgH2 formed Mg2Ni/Mg2NiH4 in situ, which act as a “hydrogen pump” to boost the diffusion of hydrogen along with the Mg/MgH2 interface. Meanwhile, the carbon layer with fantastic conductivity enormously accelerated the electron transfer. Consequently, there is no denying that the synergistic effect extremely facilitated the hydrogen absorption and desorption kinetic performance of MgH2.  相似文献   

8.
Hydrogen, which holds tremendous promise as a new clean energy option is considered as an efficient source of primary energy. Unluckily, hydrogen storage presents the most crucial difficulty restricting utilization of hydrogen energy for real applications. However, Mg metal is the best known cheap solid-state hydrogen storage media with high hydrogen capacity and operational cost effectiveness; it shows high thermal stability and poor hydrogenation/dehydrogenation kinetics. In the present work we have succeeded to prepare nanocrystalline MgH2 powders doped with a mixture of 8 wt% Nb2O5/2 wt% Ni nanocatalytic system. The synthesized nanocomposite powders possessed superior hydrogenation/dehydrogenation kinetics (2.6 min/3 min) at relatively low temperature (250 °C) with long cycle-life-time (400 h). The powders were consolidated into green-compacts, using cold pressing technique. The compacts were utilized as solid-state hydrogen source needed for charging a battery of a cell-phone device, using integrated Ti-tank/commercial proton-exchange membrane fuel cell system.  相似文献   

9.
Magnesium hydroxide (MgH2) has excellent reversibility and high capacity, and is one of the most promising materials for hydrogen storage in practical applications. However, it suffers from high dehydrogenation temperature and slow sorption kinetics. Rare earth hydrides and transition metals can both significantly improve the de/hydrogenation kinetics of MgH2. In this work, MgH2–Mg2NiH4–CeH2.73 is in-situ synthesized by introducing Ni@CeO2 into MgH2. The unique coating structure of Ni@CeO2 facilitates homogeneous distribution of synergetic CeH2.73 and Mg2NiH4 catalytic sites in subsequent ball milling process. The as-fabricated composite MgH2-10 wt% Ni@CeO2 powders possess superior hydrogenation/dehydrogenation characteristics, absorbing 4.1 wt% hydrogen within 60 min at 100 °C and releasing 5.44 wt% H2 within 10 min at 350 °C. The apparent activation energy of MgH2-10 wt% Ni@CeO2 is determined to be 84.8 kJ/mol and it has favorable hydrogen cycling stability with almost no decay in capacity after 10 cycles.  相似文献   

10.
MgH2-based hydrogen storage materials are promising candidates for solid-state hydrogen storage allowing efficient thermal management in energy systems integrating metal hydride hydrogen store with a solid oxide fuel cell (SOFC) providing dissipated heat at temperatures between 400 and 600 °C. Recently, we have shown that graphite-modified composite of TiH2 and MgH2 prepared by high-energy reactive ball milling in hydrogen (HRBM), demonstrates a high reversible gravimetric H storage capacity exceeding 5 wt % H, fast hydrogenation/dehydrogenation kinetics and excellent cycle stability. In present study, 0.9 MgH2 + 0.1 TiH2 +5 wt %C nanocomposite with a maximum hydrogen storage capacity of 6.3 wt% H was prepared by HRBM preceded by a short homogenizing pre-milling in inert gas. 300 g of the composite was loaded into a storage tank accommodating an air-heated stainless steel metal hydride (MH) container equipped with transversal internal (copper) and external (aluminium) fins. Tests of the tank were carried out in a temperature range from 150 °C (H2 absorption) to 370 °C (H2 desorption) and showed its ability to deliver up to 185 NL H2 corresponding to a reversible H storage capacity of the MH material of appr. 5 wt% H. No significant deterioration of the reversible H storage capacity was observed during 20 heating/cooling H2 discharge/charge cycles. It was found that H2 desorption performance can be tailored by selecting appropriate thermal management conditions and an optimal operational regime has been proposed.  相似文献   

11.
In the present study, the catalytic effect of Ni and ZrO2 nanoparticles on the hydrogen absorption and desorption properties of MgH2 has been investigated. The MgH2 nanocomposites were prepared by high-energy ball-milling. The morphology, phase structure, thermal behavior, and hydrogen storage properties of the materials were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), temperature-programmed desorption (TPD), differential scanning calorimetry (DSC), and the pressure-composition temperature (PCT) methods. ZrO2 and Ni nanoparticles were homogenously dispersed into the MgH2 matrix. The calculated apparent activation energy for dehydrogenation was 63.4 kJ/mol, which was decreased by 80.1 kJ/mol compared to that of as-milled MgH2. As a result, MgH2+5 wt.%Ni+5 wt.%ZrO2 demonstrated improved dehydrogenation and hydrogenation kinetics at 310 °C. The MgH2+5 wt.%Ni+5 wt.%ZrO2 sample released about 6.83 wt.% and absorbed about 6.10 wt.% in less than 30 min. Therefore, the co-catalysis of Ni and ZrO2 significantly enhances the hydrogenation and dehydrogenation properties of MgH2.  相似文献   

12.
Recent works showed that the addition of LiBH4 significantly improves the sorption kinetics of MgH2, and LiH decomposed from LiBH4 was supposed to play the catalytic effect on MgH2. In order to clarify this mechanism, the effect of LiH on the hydriding/dehydriding kinetics and thermodynamics of MgH2 was systematically investigated. The hydrogenation kinetics of LiH-doped samples, as well as the morphology after several cycles, was similar to those of pure MgH2, which indicate that Li+ had no catalytic effect on the hydrogenation of Mg. Moreover, the addition of LiH strongly retarded the hydrogen desorption of MgH2 doped with/without Nb2O5, and resulted in higher starting temperature of desorption, larger activation energy and larger pressure hysteresis of PCI curves of MgH2. H2, HD and D2 were observed in the desorption products of MgH2-2LiD, which confirms that H–H exchange indeed occurs between MgH2 and LiH, hence deteriorate desorption kinetics/thermodynamics of MgH2. The results implied that the additives containing H could retard the hydrogen desorption of MgH2 by H–H exchange effect.  相似文献   

13.
Herein, a new type of trimesic acid-Ni based metal organic framework (TMA-Ni MOF) was synthesized and then, its derivative Ni@C was introduced into MgH2 as destabilizer through high energy ball milling to prepare a Mg–Ni@C–H composite. X-ray diffraction analyses indicate the formation of Mg2Ni/Mg2NiH4 as major phases after dehydrogenation/rehydrogenation of the composite, respectively. Two hydrogen absorption plateaus are observed in the Mg–Ni@C–H composite, corresponding to the hydrogenation of Mg and Mg2Ni, with the enthalpy change values of −75.8 and −52.3 kJ mol−1 H2 respectively. Thus, it can be concluded that a destabilization effect is brought by Ni@C on thermodynamic properties of MgH2. In addition, the hydriding/dehydriding kinetics of MgH2 is notably accelerated with the addition of Ni-based MOF derivative. The activation energy values of both hydrogen absorption and desorption are significantly lowered down with the assistance of Ni@C. Moreover, stable hydrogen de/absorption capacity and kinetics are remained during 25 cycles of high-rate re/dehydrogenation, which can be ascribed to the carbon-wrapped structure of the composite, with which the aggregation of the nanosized particles can be evidently avioded.  相似文献   

14.
High dehydrogenation temperature and slow dehydrogenation kinetics impede the practical application of magnesium hydride (MgH2) serving as a potential hydrogen storage medium. In this paper, Fe–Ni catalyst modified three-dimensional graphene was added to MgH2 by ball milling to optimize the hydrogen storage performance, the impacts and mechanisms of which are systematically investigated based on the thermodynamic and kinetic analysis. The MgH2+10 wt%Fe–Ni@3DG composite system can absorb 6.35 wt% within 100 s (300 °C, 50 atm H2 pressure) and release 5.13 wt% within 500 s (300 °C, 0.5 atm H2 pressure). In addition, it can absorb 6.5 wt% and release 5.7 wt% within 10 min during 7 cycles, exhibiting excellent cycle stability without degradation. The absorption-desorption mechanism of MgH2 can be changed by the synergistic effects of the two catalyst materials, which significantly promotes the improvement of kinetic performance of dehydrogenation process and reduces the hydrogen desorption temperature.  相似文献   

15.
Commercial metal nanoparticles of Fe, Co, Ni, Cu, Zn were added to MgH2 by ball-milling to improve the kinetics of hydrogen release and the reversibility during successive absorption/desorption cycles. metal nanoparticles were well dispersed into the MgH2 matrix without formation of any ternary metal hydrides, nor binary compounds. Activation energy values were determined for the various samples by temperature programmed desorption experiments while the hydride formation enthalpy was deduced from Van't Hoff equation starting from high pressure volumetric isotherms acquired at different temperatures. The presence of transient effect during the absorption process was excluded by comparing successive hydrogenation/dehydrogenation cycles recorded at 350 °C on Ni and Fe-containing samples. Information about hydrogen absorption kinetics was also obtained. Promisingly, the Ni, Fe, and Co containing samples have shown a good stability, enhanced catalytic performance, and high rate of hydrogen absorption while Zn and Cu nanoparticles worked more like inhibitors than activators.  相似文献   

16.
Recently, it was shown that hydrogen absorption–desorption kinetics in magnesium were improved by milling magnesium hydride (MgH2) with transition metal oxides. Herein, we investigate the role of the most effective of these oxides, Nb2O5 when added in larger volume fraction. The effect of Nb2O5 on magnesium crystalline structure, particle size and (ab)desorption properties has been characterised. Moreover, we report that pure MgH2 can also show fast hydrogen sorption kinetics after a long milling time. The effects of Nb2O5 on MgH2 sorption properties are rationalised in a new approach considering Nb2O5 as a dispersing agent, which helps reduce MgH2 particle size during milling.  相似文献   

17.
To improve the dehydrogenation/hydrogenation performance of magnesium hydride (MgH2), a nickel-vanadium bimetallic oxide (NiV2O6) was prepared by a simple hydrothermal method using ammonium metavanadate and nickel nitrate as raw materials. This oxide was used to improve the hydrogen storage performance of MgH2. NiV2O6 reacted with Mg to form Mg2Ni and V2O5; Mg2Ni and V2O5 played an important role in improving the hydrogen storage properties of MgH2. The NiV2O6-doped MgH2 had an excellent hydrogen absorption and desorption kinetics performance, and it could absorb 5.59 wt% of hydrogen within 50 min at 150 °C and release about 5.3 wt% of hydrogen within 12 min. The apparent activation energies for the dehydrogenation and hydrogenation of MgH2-NiV2O6 were 92.9 kJ mol?1 and 24.9 kJ mol?1, respectively. These were 21.7% and 66.3% lower than those of MgH2, respectively. The mechanism analysis demonstrated that the improved kinetic properties of MgH2 resulted from the heterogeneous catalysis of vanadium and nickel.  相似文献   

18.
Magnesium-based hydrogen storage materials (MgH2) are promising hydrogen carrier due to the high gravimetric hydrogen density; however, the undesirable thermodynamic stability and slow kinetics restrict its utilization. In this work, we assist the de/hydrogenation of MgH2 via in situ formed additives from the conversion of an MgNi2 alloy upon de/hydrogenation. The MgH2–16.7 wt%MgNi2 composite was synthesized by ball milling of Mg powder and MgNi2 alloy followed by a hydrogen combustion synthesis method, where most of the Mg converted to MgH2, and the others reacted with the MgNi2 generating Mg2NiH4, which produced in situ Mg2Ni during dehydrogenation. Results showed that the Mg2Ni and Mg2NiH4 could induce hydrogen absorption and desorption of the MgH2, that it absorbed 2.5 wt% H2 at 473 K, much higher than that of pure Mg, and the dehydrogenation capacity increased by 2.6 wt% at 573 K. Besides, the initial dehydrogenation temperature of the composite under the promotion of Mg2NiH4 decreased greatly by 100 K, whereas it is 623 K for MgH2. Furthermore, benefiting from the catalyst effect of Mg2NiH4 during dehydrogenation, the apparent activation energy of the composite reduced to 73.2 kJ mol−1 H2 from 129.5 kJ mol−1 H2.  相似文献   

19.
The Mg-based hydrogen storage alloy with multiple platforms is successfully prepared by ball milling Co powder and Mg-RE-Ni precursor alloy, and its hydrogen storage behavior was investigated in detail by XRD, EDS, TEM, PCI, and DSC methods. The ball-milled alloy consists of the main phase Mg, the catalytic phases Mg2Ni, Mg2Co as well as a small amount of Mg12Ce, and convert into the MgH2–CeH2.73-Mg2NiH4–Mg2CoH5 composite after hydrogenation. The composite has three PCI platforms corresponding to the reversible de/hydrogenation reaction of Mg/MgH2, Mg2Ni/Mg2NiH4 and Mg6Co2H11/Mg2CoH5. Among them, the transformation between Mg2Ni and Mg2NiH4 triggers the “spill-over” effect which promote the decomposition of MgH2 phases and enhances the hydrogen desorption kinetics. Meanwhile, the conversion of the Mg6Co2H11 to Mg2CoH5 phase induces the “chain reaction” effect, which leads to preferential nucleation of Mg phase and improves the hydrogen absorption kinetics. Therefore, the Mg-RE-Ni-Co alloy has a double improvement on hydrogen absorption and desorption kinetics. Concretely, the alloy has an optimal hydrogen absorption temperature of 200 °C, at which it can absorb 5.5 wt. % H2 within 40 s. Under the conditions, the capacity of absorption almost reaches the maximum reversible value (about 5.6 wt. %). Besides, the alloy has a dehydrogenation activation energy of 67.9 kJ/mol and can desorb 5.0 wt. % H2 within 60 min at the temperature of 260 °C.  相似文献   

20.
As a high-density solid-state hydrogen storage material, magnesium hydride (MgH2) is promising for hydrogen transportation and storage. Yet, its stable thermodynamics and sluggish kinetics are unfavorable for that required for commercial application. Herein, nickel/vanadium trioxide (Ni/V2O3) nanoparticles with heterostructures were successfully prepared via hydrogenating the NiV-based two-dimensional layered double hydroxide (NiV-LDH). MgH2 + 7 wt% Ni/V2O3 presented more superior hydrogen absorption and desorption performances than pure MgH2 and MgH2 + 7 wt% NiV-LDH. The initial discharging temperature of MgH2 was significantly reduced to 190 °C after adding 7 wt% Ni/V2O3, which was 22 and 128 °C lower than that of 7 wt% NiV-LDH modified MgH2 and additive-free MgH2, respectively. The completely dehydrogenated MgH2 + 7 wt% Ni/V2O3 charged 5.25 wt% H2 in 20 min at 125 °C, while the hydrogen absorption capacity of pure MgH2 only amounted to 4.82 wt% H2 at a higher temperature of 200 °C for a longer time of 60 min. Moreover, compared with MgH2 + 7 wt% NiV-LDH, MgH2 + 7 wt% Ni/V2O3 shows better cycling performance. The microstructure analysis indicated the heterostructural Ni/V2O3 nanoparticles were uniformly distributed. Mg2Ni/Mg2NiH4 and metallic V were formed in-situ during cycling, which synergistically tuned the hydrogen storage process in MgH2. Our work presents a facile interfacial engineering method to enhance the catalytic activity by constructing a heterostructure, which may provide the mentality of designing efficient catalysts for hydrogen storage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号