首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Beach monitoring often includes testing for a single fecal indicator organism in the swimmable waters. Here, sediment, algae mat, shallow water, and deep water samples collected from four Saginaw Bay (Michigan, USA) beaches were tested for multiple fecal indicator organisms (Escherichia coli, enterococci, Clostridium perfringens, F + amp coliphage, and CN-13 coliphage) and molecular markers (human and bovine Bacteroides and enterococci surface protein) to determine the occurrence and sources of fecal indicator bacteria across beachscapes and characterize the environmental parameters which influence microbial water quality. Results show algae mats and sediment had higher levels of bacteria compared to surrounding water column. Higher concentrations of fecal indicators in shallow waters compared to deep water were attributed in part to sediment and algae bound bacteria and potential regrowth. Fecal indicator organisms were primarily influenced by wind, waves, and precipitation and partially identified as human specific using the enterococci surface protein gene. This project suggests the potential for sediment and algal mats to act as non-point sources of pollution in the nearshore zone. Future beach protection measures should focus on shallow water monitoring of multiple fecal indicators and beach grooming during calm morning hours.  相似文献   

2.
Mills et al. (1987) developed an index of zooplankton mean size to assess the state of fish communities. The use of this index was evaluated in an assessment of the fish community structure in 1993 at nearshore and offshore sites in the three Lake Erie basins. Mills et al.’s index was developed using a 153-μm mesh net, while the samples in this study have been collected with 64-μm and 110-μm mesh size nets. Two methods were used to convert the data to 153-μm equivalent collections: (a) regression relationships based on simultaneous collections with three mesh sizes, and (b) elimination of smaller organisms that would have passed through the 153-μm mesh by determining the minimum length of inclusion (MLI). The regressions employed for the conversion of zooplankton mean length (ZML) between the nets were: ZML153 = 0.137 + 0.988 ZML110 (mm) (r2= 0.804) (n = 10) and ZML153 = 0.042 + 1.330 ZML64 (mm) (r2 = 0.931) (n = 9). The MLI that resulted in the same mean length as the 153-μm sample averaged (± 1 SE) 0.267 ± 0.016 mm (n =19).The comparison between zooplankton mean length and fish community structure in the western basin of Lake Erie in 1993 showed good agreement with Mills et al.’s index. However, the same was not true for the 1988 to 1990 data. Reasons for this discrepancy are discussed.  相似文献   

3.
We compared the relationships between photosynthate allocation to protein, carbohydrate, lipid and low molecular weight (LMW) fractions and the variables daylength and water temperature in Lakes Huron, Michigan, and Ontario as well as three smaller headwater lakes in the Lake Ontario drainage. In all lakes investigated the allocation of recently produced photosynthate to carbohydrate was strongly related to daylength (% carbohydrate = −3.5 * daylength (hr) + 72.8; n = 59, r2 = 0.56). The percentage of photosynthate allocated to protein was a function of water temperature in all lakes although the y-intercept for the protein-temperature relationship was much lower in the three headwater lakes and Lake Ontario (% protein = 0.50 * temperature (°C) + 6.1; n = 37, r2 = 0.52) than in Lake Huron and Lake Michigan (% protein = 0.68 * temperature (°C) + 24.2; n = 23, r2 = 0.49). The increase in allocation to protein was related to a decrease in allocation to low molecular weight material (% LMW = −1.1 * % protein + 57.13; n = 60, r2 = 0.72). The percentages of photosynthate in lipid and LMW material were not related to any of the environmental variables measured. Assuming that photosynthate allocation is related to biochemical composition, the phytoplankton in Lakes Huron and Michigan were more protein rich for a given temperature than those in Lake Ontario and in the smaller inland lakes. The protein deficit was due to an increase in allocation to LMW material.  相似文献   

4.
Cyanotoxins, a group of hepatotoxins and neurotoxins produced by cyanobacteria, pose a health risk to those who use surface waters as sources for drinking water and for recreation. Little is known about the spatial and seasonal occurrence of cyanotoxins in Lake Ontario and other lakes and ponds within its watershed. Within the embayments, ponds, rivers, creeks, shoreside, and nearshore and offshore sites of Lake Ontario, microcystin-LR concentrations were low in May, increased through the summer, and reached a peak in September before decreasing in October. Considerable variability in microcystin-LR concentrations existed between and within habitat types within the Lake Ontario ecosystem. In general, the average microcystin-LR concentration was two orders of magnitude lower in embayment (mean = 0.084 μg/L), river (mean = 0.020 μg/L), and shoreside (mean = 0.052 μg/L) sites compared to upland lakes and ponds (mean = 1.136 μg/L). Concentrations in the nearshore sites (30-m depth) and offshore sites (100-m depth) were another order of magnitude lower (mean = 0.006 μg/L) than in the creek/river, bay/pond, and shoreside habitats. Only 0.3% (2 of 581) of the samples taken in Lake Ontario coastal waters exceeded the World Health Organization (WHO) Drinking Water Guideline of 1 μg microcystin/L for humans. In contrast, 20.4% (20 of 98) of the samples taken at upland lakes and ponds within the watershed of Lake Ontario exceeded WHO Guidelines. No significant relationship between nitrate and microcystin-LR concentrations was observed in Lake Ontario even though a significant positive relationship existed between phosphorus and phycocyanin and microcystin-LR concentrations. At an upland lake site (Conesus Lake) in the Ontario watershed, the development of a littoral Microcystis population was not observed despite high nutrient loading (P and N) into the nearshore zone, well-developed nearshore populations of filamentous Spirogyra and Zygnema, the occurrence of Dreissena spp., and the known occurrence of Microcystis and microcystin production in the pelagic waters of Conesus Lake.  相似文献   

5.
We investigated the trend in contaminant concentrations in Lake Superior bald eagles (Haliaeetus leucocephalus) from 1989–2001, and examined the relationship of contaminant concentrations to eagle reproductive rate during that time. Concentrations of dichloro-diphenyl-dichloroethylene (DDE) and total polychlorinated biphenyls (PCBs) in nestling blood plasma samples decreased significantly from 1989-2001 (p = 0.007 for DDE, p = 0.004 for total PCBs). Mean contaminant concentrations in eaglet plasma, 21.7 μg/kg DDE (n=51) and 86.7 μg/kg total PCBs (n = 54), were near or below the estimated threshold levels for impairment of reproduction as determined in other studies. A preliminary assessment of polybrominated diphenyl ether (PBDE) concentrations indicated a mean of 7.9 μg/kg total PBDEs in Lake Superior eaglet plasma (n = 5). The number of occupied bald eagle nests along the Wisconsin shore of Lake Superior increased from 15 to 24 per year, between 1989 and 2001 (p < 0.001, r2 = 0.70, n = 13 years). Eagle reproductive rate did not increase or decrease significantly between 1989 and 2001 (p = 0.530, r2 = 0.037, n = 13 years, mean productivity = 0.96 young per occupied nest). The lack of correlation between reproductive rate and contaminant concentrations, as well as the comparison of contaminant concentrations to the estimated thresholds for impairment of reproduction, suggest that DDE and PCBs no longer limit the reproductive rate of the Lake Superior eagle population in Wisconsin.  相似文献   

6.
Stomach contents of 384 siscowet lake trout (Salvelinus namaycush siscowet) from the Apostle Islands region of Lake Superior were examined to determine if diets exhibited seasonal trends or shifted with predator size. The information was also used to qualitatively compare siscowet and lean lake trout (S. namaycush) diets. Stomachs from siscowet less than 500-mm total length (TL) contained primarily macroinvertebrates (clams, Mysis relicta, and insects), sculpins (Cottidae; mean TL = 45 mm), and coregonines (Coregonus spp.; mean TL = 120 mm). Stomachs from siscowet between 500- and 699-mm TL contained items similar to smaller siscowet, but burbot (Lota lota; mean TL = 162 mm and a 254-mm siscowet were also present. Stomachs from siscowet longer than 699-mm TL contained fishes such as burbot (mean TL = 246 mm) and coregonines (mean TL = 240 mm). Dietary proportions of coregonines increased significantly with increasing siscowet length groups. The proportion of the total number of identified taxa and frequency of occurrence of terrestrial insects and sculpins declined significantly across all length groups between June and December. Siscowet and lean lake trout diets were not found to be substantially different and a potential for competition exists.  相似文献   

7.
Scales and opercles were used to age yellow perch Perca flavescens collected in 1989 from Lake Madison (South Dakota), Dauphin Lake (Manitoba), and southern Lake Michigan (Indiana). Three readers aged fish from Lake Madison and Dauphin Lake once and two readers aged fish from Lake Michigan twice. The coefficient of variation (CV) was calculated to compare precision. Ages determined from opercles were as precise as those from scales for fish from Lake Madison (CV = 0 for both structures), and more precise than ages from scales for fish from Dauphin Lake (CVopercle = 14.0, CVscale = 27.4, p < 0.001) and Lake Michigan (CV opercle = 10.6, CVscale = 13.9, p < 0.001). The high precision of scale and opercle ages for yellow perch from Lake Madison can be attributed to the fast growth rate of fish from that lake and also that only age 1 and 2 fish were aged. The greater precision of opercle ages in comparison to scale ages for Dauphin Lake and Lake Michigan yellow perch can be attributed to ease of recognition of false annuli on opercles as well as to difficulty in distinguishing between false and true annuli crowded on the edge of scales from mature, slower growing fish. Because true annuli are more easily recognized on opercles, ages determined from opercles may be more accurate than ages determined from scales for yellow perch growing at slow or moderate rates.  相似文献   

8.
Sediment and amphipods (Diporeia spp.) were collected in areas in western Lake Ontario suspected of containing a range of sediment metal contents. The total metal contents (Al, As, Cd, Cr, Cu, Ni, Fe, V, and Zn) of depurated Diporeia tissues were measured and compared to the total metal contents of the surrounding sediment. The fractional bioavailability of As, Cu, Fe, and Zn was determined in those same sediments using a sequential chemical extraction (SCE) procedure and correlated with depurated Diporeia tissue metal contents. Results of these analyses were then used to assess the ability of Diporeia to accumulate sediment metal contamination. A comparison of metal biota-sediment accumulation factors (BSAFs) and sediment metal enrichment factors (EFs) for each metal yielded separate metal groups showing different behavior for tissue accumulation. Aluminum, Cr, Fe, Ni, and V were not enriched in the sediments and were not accumulated in Diporeia tissues, while As, Cd, Cu, and Zn were enriched in the sediments and accumulated in Diporeia tissues. SCE results showed that Cu (3.2 to 8.4 %) and Zn (13 to 19 %) contents in the easily extractable sediment fractions (MgCl2 and Na-acetate) were significantly correlated with Cu (r = 0.86; P<0.01) and Zn (r = 0.69; P<0.05) contents in depurated Diporeia tissue. In addition, Cu and Zn in Diporeia tissues are also correlated to the total sediment metal content for each respective metal (Cu: r = 0.67, P < 0.05; Zn: r = 0.66, P < 0.05). The high BSAFs for Cu and Zn, in combination with the association of tissue metal contents with easily extracted sediment metal fractions, suggest that Diporeia may be a potential bioindicator for Cu and Zn contamination in sediments.  相似文献   

9.
To better understand zooplankton dynamics in Lake Ontario’s Toronto Harbour and adjacent coastal area (CA), we sampled zooplankton, phytoplankton, nutrients and physical parameters on six dates in 2016. Despite higher levels of nutrients, chlorophyll and primary production in the inner harbor (IH), the areas supported similar May to November zooplankton biomass (IH = 32 ± 7 and CA = 42 ± 10 mg/m3). IH values were much lower than other nutrient-enriched embayments in Lake Ontario, yet CA biomass was twice that of nearshore sites away from Toronto. Small zooplankton such as rotifers and Bosmina dominated IH; and large taxa (Daphnia, calanoids and predatory cladocerans) were more important in the CA. Daphnia, Bosmina, cyclopoids and calanoids were larger in the CA, and adult cyclopoids had higher egg ratios. This led to low annual IH production estimates for both cyclopoid and calanoid copepods. Total phosphorus and chlorophyll did not appear to regulate zooplankton biomass, but positive relationships were found with bacterial biomass in the IH and with temperature in the cool season. Atypically high fish planktivory rates likely suppressed larger IH zooplankton in 2016, allowing small, resilient Bosmina to flourish and contribute 84% of total production in the IH. Comparing 2016 data to previous zooplankton surveys revealed considerable inter-annual variation in proportions of Daphnia, Bosmina and predatory cladocerans over the 1994 to 2016 period, and the strong top-down controls observed in 2016 were not typical. Elevated microbial production may serve as an important alternate trophic pathway supporting cladoceran populations in Toronto Harbour.  相似文献   

10.
The round goby (Neogobius melanostomus) was introduced into the Great Lakes in the 1990s through ballast water transfer. Gobies are potential vectors for material transfer between the benthic and pelagic zones. A bioenergetics model was developed for round gobies to enable us to quantify the flow of energy, contaminants, and nutrients from the benthos to pelagic fishes. Weight- and temperature-dependent coefficients for metabolism and consumption were derived. Food consumption increased with temperature up to 26°C before sharply decreasing, and weight-specific consumption decreased with increasing fish weight (allometric coefficient = −0.256, SE = 0.160). Specific oxygen consumption was inversely related to body mass (allometric coefficient = −0.157, SE = 0.025) and increased exponentially with temperature. Estimated Q10 for respiration was 1.84. Additional parameters were obtained from the literature to describe specific dynamic action, egestion, excretion, and reproductive losses. The bioenergetics model explained growth of round gobies in Lake Erie and in their native range.  相似文献   

11.
In an effort to develop indicators for Great Lakes near-shore conditions, diatom-based transfer functions to infer water quality variables were developed from 155 samples collected from coastal Great Lakes wetlands, embayments and high-energy shoreline sites. Over 2,000 diatom taxa were identified, and 352 taxa were sufficiently abundant to include in transfer function development. Multivariate data exploration revealed strong responses of the diatom assemblages to stressor variables, including total phosphorus (TP). Spatial variables such as lake, latitude and longitude also had notable relationships with assemblage characteristics. A diatom inference transfer function for TP provided a robust reconstructive relationship (r2 = 0.67; RMSE = 0.28 log(μg/L); r2jackknife = 0.55; RMSEP = 0.33 log (μg/L)) that improved following the removal of 13 samples that had poor observed-inferred TP relationships (r2 = 0.75; RMSE = 0.22 log(μg/L); r2jackknife = 0.65; RMSEP = 0.26 log (μg/L)). Diatom-based transfer functions for other water quality variables, such as total nitrogen, chloride, and chlorophyll a also performed well. Measured and diatom-inferred water quality data were regressed against watershed characteristics (including gradients of agriculture, atmospheric deposition, and industrial facilities) to determine the relative strength of measured and diatom-inferred data to identify watershed stressor influences. With the exception of pH, diatom-inferred water quality variables were better predicted by watershed characteristics than were measured water quality variables. Because diatom communities are subject to the prevailing water quality in the Great Lakes coastal environment, it appears they can better integrate water quality information than snapshot measurements. These results strongly support the use of diatoms in Great Lakes coastal monitoring programs.  相似文献   

12.
Recently, membrane technology has been considered an alternative to conventional water purification. To study the fate of viruses in membrane processes, indigenous coliphages in pilot scale membrane processes located in the eastern part of Tokyo Metropolitan area have been surveyed for 6 months. This plant used river water as its resource and had two microfiltration membrane processes which had different pore sizes (0.2 µm and 0.1 µm) and one ultrafiltration process which had 13,000 nominal molecular weight cut off. To detect indigenous coliphages, E. coli K12 F+(A/λ) and E. coli C were used as host bacteria. E. coli K12 F+(A/λ) can detect both DNA and RNA phages and E. coli C can only DNA phage. The resource water contained E. coli K12 phages at 200–1500 PFU/100 mL and the removal ratio of these DNA and RNA phages was lower than that of DNA phage by E. coli C in both MF membrane processes through 6 months. It is thought to be caused by difference of phage size, because DNA phage is bigger than RNA phage in general. The removal ratio of E. coli K12 and E. coli C phages reached 100% in the UF membrane process. According to the comparison of the concentration of phages in solution and eluted from suspended solid in resource and drain, it is thought that most phages concentrated in the drain were absorbed in suspended solids. To make certain of the removal ratio in UF and NF (nanofiltration) processes, high concentrations of coliphage Qβ and poliomyelitis virus vaccine were fed into these processes. The removal ratio of coliphage Qβ in UF and NF processes are 10−83 and 10−6.3 respectively, and the ratio of poliomyelitis virus vaccine in UF and NF are µ10−6.7 and µ10−7.3 respectively.  相似文献   

13.
The microbiology of stream water has a seasonal component that results from both biogeochemical and anthropogenic processes. Analysis of nonevent conditions in streams entering Conesus Lake, NY (USA), indicated that total coliform, Escherichia coli, and Enterococcus spp. levels peak in the summer in all streams, independent of the agricultural use in the stream sub-watershed. Prior to implementation of management practices, E. coli in water draining Graywood Gully, a sub-watershed with 74% of the land in agriculture, reached as high as 2806 CFU/100 mL, exceeding the 235 CFU/100 mL EPA Designated Bathing Beach Standard (EPA-DBBS). In contrast, North McMillan Creek, a sub-watershed with < 13% of its land in agriculture, had E. coli maxima generally near or below the EPA-DBBS. Graywood Gully at times had a higher microbial loading than North McMillan Creek, a sub-watershed 48 times larger in surface area. Over a 5-year study period, there was a major decrease in bacterial loading during nonevent conditions at Graywood Gully, especially after manure management practices were implemented, while bacterial loading was constant or increased in streams draining three other sub-watersheds. E. coli levels dropped more than 10 fold to levels well below the EPA-DBBS while the yearly maximum for Enterococcus dropped by a factor 2.5. Similarly, exceedency curves for both E. coli and Enterococcus also showed improvement since there were fewer days during which minimum standards were exceeded. Even so, Graywood Gully at times continued to be a major contributor of E. coli to Conesus Lake. If wildlife represents a significant source of indicator bacteria to Graywood Gully as has been reported, stream remediation, management efforts and compliance criteria will need to be adjusted accordingly.  相似文献   

14.
Amphibians and reptiles are key bioindicators of environmental health and habitat quality and can be used to provide baseline information to help assess habitat conditions and evaluate restoration success. In 2011 and 2012 we conducted comprehensive herpetological surveys throughout the Saginaw Bay area and assessed community composition, species richness, and spatial distribution. We also compared current distributions to historic observations and habitat conditions. A total of 25 taxa (13 species of reptiles and 12 species of amphibians) were observed within the Saginaw Bay area during this study. Herpetofauna were conspicuously unobserved in areas where Phragmites australis dominates the vegetation community and were concentrated in remaining areas of suitable habitat adjacent to Phragmites. Herpetofauna observations were clustered in areas where Phragmites and other invasive plant species were rare or absent. We were able to relate categorization of Phragmites invasion (i.e., 1 = 0–10% colonization detected, 2 = 10–50%, 3 > 50%) to both a biologically and statistically significant decrease in amphibian and reptile species richness. Our results indicate that Saginaw Bay can support a diverse herpetofauna community and there is potential to restore and improve this region for rare and common amphibian and reptile species. Removal of invasive plant species would greatly improve herpetofaunal communities within Saginaw Bay. Our results will help this region's resource professionals assess the quality of habitat and set goals for restoration of amphibian and reptile habitats.  相似文献   

15.
C-phycocyanin (C-PC) and chlorophyll-a (Chl-a) concentrations for the eutrophic waters of Missisquoi Bay, Lake Champlain (VT–QC) were retrieved from Envisat's MERIS radiance data (300 m spatial resolution) and validated against coincident georeferenced transect observations. Pigment concentrations were also predicted from empirically calibrated QuickBird data (2.4 m spatial resolution) using selected band ratios and principal components analysis. The QuickBird NIR/Red band ratio accounted for approximately 80% of the variability in observed Chl-a concentration, allowing for detailed mapping of phytoplankton spatial distributions. C-PC concentrations, in contrast, were somewhat poorly modeled (R2 = 0.68). Use of these data for monitoring purposes, however, is also limited by the need for coincident field observations. Chl-a concentrations were also accurately retrieved from the MERIS data (Mean Relative Error = -0.6%) despite high concentrations of suspended particles and dissolved organic matter in the bay waters. C-PC concentrations were underestimated on average by 2.1%, but by 10–20% at high C-PC concentrations (≥ 80 μg/L) and as the proportion of cyanobacteria in the phytoplankton community decreased. The relatively high overall accuracies observed, however, attest to the robustness of the MERIS semi-analytical retrieval algorithms used to quantify potentially toxic cyanobacteria cell densities without the need for coincident field data. Our analyses over a 17 day period captured the peak and collapse of a late summer cyanobacterial bloom, illustrating the value of remote sensing to provide synoptic and timely information on the abundance and distribution of cyanobacterial populations that, in turn, can facilitate public health risk assessment.  相似文献   

16.
Burrowing mayflies (Hexagenia limbata and H. rigida) recolonized sediments of the western basin of Lake Erie in the 1990s following decades of pollution abatement. We predicted that Hexagenia would also disperse eastward or expand from existing localized populations and colonize large regions of the other basins. We sampled zoobenthos in parts of the western and central basins yearly from 1997–2005, along the north shore of the eastern basin in 2001–2002, and throughout the lake in 2004. In the island area of the western basin, Hexagenia was present at densities ≤ 1,278 nymphs/m2 and exhibited higher densities in odd years than even years. By contrast, Hexagenia became more widespread in the central basin from 1997-2000 at densities ≤ 48 nymphs/m2 but was mostly absent from 2001-2005. Nymphs were found along an eastern basin transect at densities≤ 382/m2 in 2001 and 2002. During the 2004 lake-wide survey, Hexagenia was found at 63 of 89 stations situated throughout the western basin (≤ 1,636 nymphs/m2, mean = 195 nymphs/m2, SE = 32, N = 89) but at only 7 of 112 central basin stations, all near the western edge of the basin (≤ 708 nymphs/m2), and was not found in the eastern basin. Hexagenia was found at 2 of 62 stations (≤ 91 nymphs/m2) in harbors, marinas, and tributaries along the south shore of the central basin in 2005. Oxygen depletion at the sediment-water interface and cool temperatures in the hypolimnion are probably the primary factors preventing successful establishment throughout much of the central basin. Hexagenia can be a useful indicator of lake quality where its distribution and abundance are limited by anthropogenic causes.  相似文献   

17.
18.
Distribution and density of two introduced dreissenid species of mollusks, the zebra mussel Dreissena polymorpha and quagga mussel D. bugensis, were monitored in the Inner Bay at Long Point, Lake Erie, 1991–1995. Since populations of certain waterfowl species have been reported to alter their dietary intake and migration patterns in response to the ready availability of zebra mussels, the percent occurrence of zebra mussels in the diet of 12 duck species (552 birds) was studied concurrently, and several spring and fall aerial waterfowl surveys were flown between 1986 and 1997 (n = 75), to document changes in duck populations at Long Point. The first reproductive population of zebra mussels on the bay most likely appeared in 1990. After an initial rapid increase in density and colonization of the Inner Bay, zebra mussels began to steadily and consistently decline in absolute numbers, density per station and occupied area. Mean density per station in 1995 was 70% less than in 1991, the first year of rapid colonization, and 67% less than in 1992, the year of peak abundance in the bay (P < 0.05). Occupied area peaked in 1992, with 80% of sampling stations supporting mussels; the following 3 years showed consistent declines in the proportion of stations supporting mussels: 1993 = 75.9%, 1994 = 63.2% and 1995 = 57.1% (P < 0.05). Mussels in size class 0 to 5 mm were most abundant in 1991, 1993 and 1995, whereas those in size class 6 to 10 mm predominated in 1992 and 1994 (P < 0.05). Very few mussels over 15 mm were found. Lesser Scaup Aythya affinis (75.4 to 82.5 % occurrence), Greater Scaup A. marila (66.7 to 81.5 % occurrence), and Bufflehead Bucephala albeola (46.7 to 60 % occurrence) were the only three waterfowl species that consistently incorporated zebra mussels in their diet, and the mussel decline coincided with a substantial increase in the populations of these species at Long Point. Waterfowl days for Lesser and Greater Scaup combined increased rapidly from 38,500 in 1986 (prior to the zebra mussel colonization of Long Point) to 3.5 million in 1997 (P = 0.012). Bufflehead days increased from 4,700 to 67,000 during the same period (P = 0.001). Oligotrophication of Lake Erie, through reduced plankton and chlorophyll concentrations, has occurred since the invasion of zebra mussels, probably a result of filtering activities of introduced mussels. While a reduction in plankton availability may have contributed to the zebra mussel decline, high rates of waterfowl predation probably had the most substantial effect on mussel densities at Long Point. Waterfowl predation also probably influenced the size structure of the zebra mussel population, since waterfowl are size-selective foragers, and increased water clarity would have facilitated their ability to select preferred medium and large size classes of mussels. Quagga mussels, which were first detected in 1993, experienced a decline in both density and area occupied over the next two years. Quagga mussels rarely attached to soft substrates, and their decline is possibly related to the decline of suitable hard substrates, such as zebra mussels, as well as to predation by waterfowl.  相似文献   

19.
The freshwater amphipod Diporeia is a dominant macroinvertebrate species in Lake Superior’s benthic community and an important prey item for many fish. A capacity to predict growth and production rates of Diporeia using a bioenergetics model requires information on physiological processes of the species. The objective of this study is to quantify oxygen consumption of Lake Superior Diporeia and to determine if respiration rate changes with body length. Diporeia were collected from Lake Superior and kept over natural sediment maintained at 4 °C. Dissolved oxygen levels for groups of immature (2 mm), juvenile (4 mm), and adult (6 mm) Diporeia in 20 ml microcosms were measured using a polarographic microelectrode. Mass-specific respiration rates for Lake Superior Diporeia ranged from 32.0 to 44.7 mg O2 g DW 1 day −1. A significant relationship between body length and mass-specific respiration rate (p > 0.1) was not found. The estimate of Diporeia respiration presented here is significantly higher (p < 0.05) than previous findings from populations in Lakes Michigan and Ontario. This study provides new data on respiration rates of Lake Superior Diporeia and compares findings to studies for other connecting Great Lakes.  相似文献   

20.
The results of sediment oxygen demand (SOD) measurements for the central basin of Lake Erie, 1979, are presented. Two chambers were used. One, a triangular chamber, has a mixing velocity of 5 cm/sand gives values for SOD of 0.86 ± 0.42 gm2/d (n = 52). The second chamber, a hemispherical dome with gentle mixing, gives values of 0.32 ± 0.11 g/m2/d (n = 13). There are no significant differences in measured values between two stations, located 50 km apart, when measurements from the same chamber design are compared. There are no measurable effects of photosynthesis when daytime values are compared with nighttime values or when light and dark chambers are compared. A comparison of these two SOD values with rates observed for hypolimnetic oxygen decline in the water column shown that the value measured by the dome (0.32 gm/m2/d) is the most plausible value. It is hypothesized that the fluid mechanics of the triangular chamber do not properly emulate the hydrodynamics of the lake, causing the higher values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号