首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
Glucose and xylose co-fermentation is crucial to maximize hydrogen yield from waste lignocellulose. In this study, cell growth, sugar consumption, and hydrogen production profiles of Thermoanaerobacter thermosaccharolyticum W16 feeding with a range of glucose and xylose were experimental investigated coupled with kinetic analysis. Results showed although T. thermosaccharolyticum W16 could use both glucose and xylose for hydrogen production, a maximum cell growth rate of 0.27 g/L/h and hydrogen production rate of 14.53 mmol/L/h was found with glucose as sole substrate, the value was 92.8% and 49.8% higher than using xylose as the only carbon source. Further interpolation analysis and experimental demonstration suggested when glucose content in the mixed substrate higher than 58.2%, the inhibitory effect on xylose utilization was increased, but when glucose concentration fell below 21.7%, its utilization will be subject to a certain degree of feedback inhibition. Coupling experimental results with kinetic analysis in this study provides a powerful evidence to further develop the potential of T. thermosaccharolyticum W16 as a biocatalyst for hydrogen production from lignocellulosic biomass.  相似文献   

2.
In this study, the co-fermentation of carbohydrates and proteins at different ratios (C1–C5) was explored. The rates of particulate carbohydrates degradation in the co-substrate mixtures, not only increased with starch concentrations, but negatively impacted the degradation rates of the particulate proteins. Particulate proteins also negatively impacted particulate carbohydrate degradation rates, albeit to a lesser extent. Generally, there was a synergistic impact on hydrogen production and the optimum ratio that required no pH control occurred at C4 (80% carbohydrates + 20% proteins) with a hydrogen yield of 350 mL H2/gCODadded which was 38% higher than the expected, and the fermentation followed the acetate-ethanol pathway. Response Surface Methodology (RSM) was used to optimize the responses to the co-fermentation process at C4. By fitting 20 experimental data points, the responses adequately fitted second-order polynomial models. At the optimized VFA and ammonia concentrations of 580 mg/L and 40 mg/L, respectively, the biohydrogen production process would be feasible without pH control at a carbohydrate-to-protein COD ratio of 4:1.  相似文献   

3.
Co-fermentation of sewage sludge and algae was performed for enhancing the hydrogen production, and the effect of Fe2+ on co-fermentation process was examined. Results showed that both co-fermentation process and Fe2+ addition promoted hydrogen production. Highest hydrogen production of 28 mL/100 mL (14.8 mL H2/g VSadded) was obtained from the co-fermentation group with 600 mg/L Fe2+ addition, which was 2.15 times, 2.00 times and 1.87 times of mono-fermentation of sludge, mono-fermentation of algae, and the co-fermentation group without Fe2+ addition. Both volatile solids and protein degradation were stimulated by co-fermentation process. Microbial analysis showed that co-fermentation groups with Fe2+ addition enriched Clostridium sensu stricto 13, Clostridium tertium and Terrisporobacter, which were positively correlated with cumulative hydrogen production. This study suggested that the co-fermentation of sludge and algae in the presence of Fe2+ could significantly improve the hydrogen production by stimulating the hydrogen-producing metabolism.  相似文献   

4.
The optimum values of hydraulic retention time (HRT) and organic loading rate (OLR) of an anaerobic sequencing batch reactor (ASBR) for biohydrogen production from palm oil mill effluent (POME) under thermophilic conditions (60 °C) were investigated in order to achieve the maximum process stability. Microbial community structure dynamics in the ASBR was studied by denaturing gradient gel electrophoresis (DGGE) aiming at improved insight into the hydrogen fermentation microorganisms. The optimum values of 2-d HRT with an OLR of 60 gCOD l−1 d−1 gave a maximum hydrogen yield of 0.27 l H2 g COD−1 with a volumetric hydrogen production rate of 9.1 l H2 l−1 d−1 (16.9 mmol l−1 h−1). The hydrogen content, total carbohydrate consumption, COD (chemical oxygen demand) removal and suspended solids removal were 55 ± 3.5%, 92 ± 3%, 57 ± 2.5% and 78 ± 2%, respectively. Acetic acid and butyric acid were the major soluble end-products. The microbial community structure was strongly dependent on the HRT and OLR. DGGE profiling illustrated that Thermoanaerobacterium spp., such as Thermoanaerobacterium thermosaccharolyticum and Thermoanaerobacterium bryantii, were dominant and probably played an important role in hydrogen production under the optimum conditions. The shift in the microbial community from a dominance of T. thermosaccharolyticum to a community where also Caloramator proteoclasticus constituted a major component occurred at suboptimal HRT (1 d) and OLR (80 gCOD l−1 d−1) conditions. The results showed that the hydrogen production performance was closely correlated with the bacterial community structure. This is the first report of a successful ASBR operation achieving a high hydrogen production rate from real wastewater (POME).  相似文献   

5.
Biohydrogen (Bio-H2) can be produced from starch factory wastewater and mixed microorganisms using dark fermentation. Acidic and basic chemicals were used to treat the microorganisms to select the hydrogen (H2)-producing culture. The experiment used a 120 mL bioreactor at 35 °C and the operation commenced with the initial pH level of wastewater in the pH range 4–7 in batch mode. The bacteria:chemical oxygen demand (COD) ratio was 0.2. The initial pH level of the wastewater in the fermentation process affected the H2 yield and the specific hydrogen production rate (SHPR). For acid-treated bacteria, the maximum H2 yield and SHPR were produced at an initial pH of 6.5. The maximum H2 yield and SHPR were 138 mL/g COD degraded and 7.42 mL/g cells?h, respectively. For the base-treated bacteria, the maximum H2 yield and SHPR were produced at initial pH of 6.5 and pH 7, respectively. The maximum H2 yield and SHPR were 182 mL/g COD degraded and 25.60 mL/g cells?h, respectively. The COD degradation efficiency levels were 16 and 20% for acid- and base-treated bacteria, respectively. The digested wastewater remained acidic at pH 4.79–4.83. Throughout the study, no methane gas was observed in the gas mixture produced.  相似文献   

6.
Organic wastes are considered as potential substances for economical biohydrogen production, because the carbohydrate and protein are main components. Previous investigations indicate that an optimum hydrogen production appear in acidic conditions to carbohydrates, or in alkali condition to protein. However, in practice, the treatment of these organic wastes by anaerobic fermentation usually carries out at neutral pH condition, in which biohydrogen production is only a middle process. So, the purpose of this paper is to evaluate the biohydrogen production at neutral pH condition from carbohydrates or protein. Batch tests were conducted to investigate the differences in biohydrogen production by anaerobic fermentation at neutral initial pH using carbohydrate and protein (glucose and peptone) as the sole carbon source. The experimental results showed that the maximal hydrogen yields of two substrates were about 0.14 ml H2/mg glucose and 0.077 ml H2/mg protein, respectively, at neutral initial pH. Although the hydrogen yields of glucose is far greater than that of protein at neutral pH, they were lower than previous results of hydrogen production in acidic condition to carbohydrate or in alkali condition to protein. This result shows that the neutral pH is not an optimal condition for biohydrogen production. In this experiment of biohydrogen production, a phenomenon has been observed that the hydrogen production and hydrogen consumption occurred simultaneously in the fermentation of protein, whereas the hydrogen production occurred only in the fermentation of glucose. Furthermore, the different evaluation of the main components of the organic liquid by-products produced by fermentation of each substrate implied that the biohydrogen production pathways of these two substrates were different. Molecular analysis indicated that the dominant microorganisms during the anaerobic fermentation of these two substrates are greatly different.  相似文献   

7.
To solve the thermodynamic limitations on the hydrogen (H2) yield by dark fermentation (DF), the conductive carbons are usually used to mediate the H2-DF.In this work, the nitrogen (N)-phosphorus (N) doped starch carbon (NPSC) was prepared and characterized to investigate its influence on H2-DF. NPSC effectively raise H2 yield compared with starch-derived carbon (SC). The optimal dosage of SC (400 mg/L) and NPSC (600 mg/L) caused the highest H2 yield of 219.5 and 261.2 mL/g glucose, respectively, being higher than the control yield (161.4 mL/g glucose). Factually, compared with the control group without any carbon, NPSC optimized the microbial community structure and increased the abundance of C. butyricum from 19.09% to 30.87%. This fact increased the shift of metabolic pathway to butyric acid evolution, thereby promoting the substrate conversion level to H2.  相似文献   

8.
This study investigated the continuous biohydrogen production in an anaerobic inner cycle biohydrogen production (AICHP) reactor fed with synthetic molasses wastewater as the model substrate under mesophilic conditions (37 ± 1 °C). The hydraulic retention times (HRTs) were set as 6.12, 4.90, 4.08, 3.50, and 3.06 h. Both maximum hydrogen production rate (HPR) (8.08 ± 0.48 L/L/d) and maximum granule formation were achieved at the HRT of 3.50 h. Acetic acid and butyric acid were the dominant metabolites in all tested HRTs throughout the experiment. Microbial community analysis showed that shortening the HRT promoted hydrogen production. This was mainly achieved by enhancing the growth of acetogenic bacteria in the AICHP reactor, rather than the growth of hydrogen-producing bacteria.  相似文献   

9.
Glucose and xylose are the dominant monomeric carbohydrates present in agricultural materials which can be used as potential building blocks for various biotechnological products including biofuels production. Hence, the imperative role of glucose to xylose ratio on fermentative biohydrogen production by mixed anaerobic consortia was investigated. Microbial catabolic H2 and VFA production studies revealed that xylose is a preferred carbon source compared to glucose when used individually. A maximum of 1550 and 1650 ml of cumulative H2 production was observed with supplementation of glucose and xylose at a concentration of 5.5 and 5.0 g L−1, respectively. A triphasic pattern of H2 production was observed only with studied xylose concentration range. pH impact data revealed effective H2 production at pH 6.0 and 6.5 with xylose and glucose as carbon sources, respectively. Co-substrate related biohydrogen fermentation studies indicated that glucose to xylose ratio influence H2 and as well as VFA production. An optimum cumulative H2 production of 1900 ml for 5 g L−1 substrate was noticed with fermentation medium supplemented with glucose to xylose ratio of 2:3 at pH 6. Overall, biohydrogen producing microbial consortia developed from buffalo dung could be more effective for H2 production from lignocellulosic hydrolysates however; maintenance of glucose to xylose ratio, inoculum concentration and medium pH would be essential requirements.  相似文献   

10.
The influence of different pretreatment methods on anaerobic mixed inoculum was evaluated for selectively enriching the hydrogen (H2) producing mixed culture using glucose as the substrate. The efficiency of H2 yield and the glucose fermentation pathway were found to be dependent on the type of pretreatment procedure adopted on the parent inoculum. The H2 yield could be increased by appropriate pretreatment methods including the use of heat, alkaline or acidic conditions. Heat pretreatment of the inoculum for 30 min at 80 °C increased the H2 yield to 53.20% more than the control.When the inoculum was heat-pretreated at 80 °C and 90 °C, the glucose degraded via ethanol (HEt) and butric acid (HBu) fermentation pathways. The degradation pathways shifted to HEt and propionate (HPr) types as the heat pretreatment temperature increased to 100 °C. When the inoculum was alkali- or acid-pretreated, the fermentation pathway shifted from glucose to a combination of the HPr and HBu types. This trend became obvious as the acidity increased. As the fermentation pathway shift from the HEt type to the HPr and HBu types, the H2 yield decreased.  相似文献   

11.
The microbial community structure of thermophilic mixed culture sludge used for biohydrogen production from palm oil mill effluent was analyzed by fluorescence in situ hybridization (FISH) and 16S rRNA gene clone library techniques. The hydrogen-producing bacteria were isolated and their ability to produce hydrogen was confirmed. The microbial community was dominated by Thermoanaerobacterium species (∼66%). The remaining microorganisms belonged to Clostridium and Desulfotomaculum spp. (∼28% and ∼6%, respectively). Three hydrogen-producing strains, namely HPB-1, HPB-2, and HPB-3, were isolated. 16S rRNA gene sequence analysis of HPB-1 and HPB-2 revealed a high similarity to Thermoanaerobacterium thermosaccharolyticum (98.6% and 99.0%, respectively). The Thermoanaerobacterium HPB-2 strain was a promising candidate for thermophilic fermentative hydrogen production with a hydrogen yield of 2.53 mol H2 mol−1hexose from organic waste and wastewater containing a mixture of hexose and pentose sugars. Thermoanaerobacterium species play a major role in thermophilic hydrogen production as confirmed both by molecular and cultivation-based analyses.  相似文献   

12.
Anaerobic mesophilic co-digestion of mixed sewage sludge from wastewater treatment plants, WWTP, with crude glycerol, the major byproduct of the biodiesel industry, has been examined using a two-phase digestion process in a semi-continuous CSTR at laboratory scale. The objective was to determine the operational conditions that enhanced biohydrogen and methane production and to evaluate the effect of the organic loading rate (OLR) applied to the process. It was concluded that the Hydraulic Retention Time HRT of the methanogenic stage did not have an important influence on the operational process of co-digestion of sewage sludge and glycerol in terms of efficiency of organic removal and biogas yield. Hence, the results obtained were 73–77% organic matter removal (as CODr) with 0.032 LH2/gCODr and 0.16 LCH4/gCODr when the system operated at OLRs in the range of 15.33–17.90 gCODs/L d with HRTs of 3 days in the acidogenic digester and 6, 8, and 10 days in the methanogenic digester. In terms of volatile solids, the results obtained were 92–88% organic matter removal (as VSr) with 0.20 LH2/gVSr and 1.27 LCH4/gVSr when the system operated at OLRs in the range of 1.94–2.79 gVS/L d.  相似文献   

13.
Microbial electrolysis cell (MEC) is a promising reactor. However, currently, the reactor cannot be adapted for industrial-scale biohydrogen production. Nevertheless, this drawback can be overcome by modeling studies based on mathematical equations. The limitation of analytical instrumentation to record the non-linearity of the dynamic behavior for biohydrogen processes in an MEC has led to the introduction of computational approach that has the potential to reduce time constraints and optimize experimental costs. Reviews of comparative studies on bioelectrochemical models are widely reported, but there is less emphasis on the MEC model. Therefore, in this paper, a comprehensive review of the MEC mathematical model will be further discussed. The classification of the model with respect to the assumptions, model improvement, and extensive studies based on the model application will be critically analyzed to establish a methodology algorithm flow chart as a guideline for future implementation.  相似文献   

14.
Biohydrogen production using dark fermentation (hydrolysis and acidogenesis) is one of the ways to recover energy from lactate wastewater from the food-processing industry, which has high organic matter. Dark fermentation can be affected by the temperature, pH and the microbial community structure. This study investigated the effects of temperature and initial pH on the biohydrogen production and the microbial community from a lactate wastewater using dark fermentation. Biohydrogen production was successful only at lower temperature levels (35 and 45 °C) and initial pH 6.5, 7.5 and 8.5. The highest hydrogen yield (0.85 mol H2/mol lactate consumed) was achieved at 45 °C and initial pH 8.5. The COD reduction achieved by fermenting the lactate wastewater at 35 °C ranged between 21 and 30% with the maximum COD reduction at pH 8.5, and at 45 °C, the COD reduction ranged between 12 and 21%, with the maximum at pH 7.5. At 35 °C, the lactate degradation ranged between 54 and 95%, while at 45 °C, it ranged between 77 and 99.8%. 16S rRNA sequencing revealed that at 35 °C, bacteria from the Clostridium genera were the most abundant at the end of the fermentation in the reactors that produced hydrogen, while at 45 °C Sporanaerobacter, Clostridium and Pseudomonas were the most abundant.  相似文献   

15.
In this study, hydrogen gas was produced from starch feedstock via combination of enzymatic hydrolysis of starch and dark hydrogen fermentation. Starch hydrolysis was conducted using batch culture of Caldimonas taiwanensis On1 able to hydrolyze starch completely under the optimal condition of 55 °C and pH 7.5, giving a yield of 0.46–0.53 g reducing sugar/g starch. Five H2-producing pure strains and a mixed culture were used for hydrogen production from raw and hydrolyzed starch. All the cultures could produce H2 from hydrolyzed starch, whereas only two pure strains (i.e., Clostridium butyricum CGS2 and CGS5) and the mixed culture were able to ferment raw starch. Nevertheless, all the cultures displayed higher hydrogen production efficiencies while using the starch hydrolysate, leading to a maximum specific H2 production rate of 116 and 118 ml/g VSS/h, for Cl. butyricumCGS2 and Cl. pasteurianum CH5, respectively. Meanwhile, the H2 yield obtained from strain CGS2 and strain CH5 was 1.23 and 1.28 mol H2/mol glucose, respectively. The best starch-fermenting strain Cl. butyricum CGS2 was further used for continuous H2 production using hydrolyzed starch as the carbon source under different hydraulic retention time (HRT). When the HRT was gradually shortened from 12 to 2 h, the specific H2 production rate increased from 250 to 534 ml/g  VSS/h, whereas the H2 yield decreased from 2.03 to 1.50  mol H2/mol glucose. While operating at 2 h HRT, the volumetric H2 production rate reached a high level of 1.5 l/h/l.  相似文献   

16.
Biohydrogen production from synthetic wastewater as substrate was studied in anaerobic small scale batch reactors. Enriched anaerobic mixed consortia sampled from various environments were used as parent inocula to start the bioreactors. Selective enrichments were achieved by various physical and chemical pretreatments and changes in the microbial communities were monitored by metagenomic and molecular diagnostics approaches. Experimental data showed the feasibility of biohydrogen production using synthetic wastewater as substrate. The hydrogen generation capability of the different mixed consortia is clearly dependent on the pretreatment methods. The described approach opens the possibility for an alternative way towards simultaneous wastewater treatment and renewable energy generation.  相似文献   

17.
Five specific real-time polymerase chain reaction primers targeting the 16S rRNA gene of Clostridium spp., Klebsiella spp., Streptococcus spp., Pseudomonas spp., and Bifidobacterium spp., and two primer sets targeting the hydrogenase genes of hydrogen-producing Clostridium pasteurianum and Clostridium butyricum were designed and tested in the present study to quantify the microorganisms in fermentative biohydrogen production systems. The former primers revealed the composition of all coexisting microorganisms, whereas the latter ones provided information on which clostridia were responsible for the biohydrogen production in various operational conditions. When sucrose was selected as the feeding substrate, the biogas production and hydrogen production rate (HPR) of the system increased as the percentage of Clostridium spp. (especially C. pasteurianum) increased. The cell count of C. pasteurianum increased up to 90% of the total cell population when the system approached its maximum hydrogen production. C. butyricum was identified as the main hydrogen-producing clostridium in the condensed molasses soluble wastewater feeding system, but there was no significant correlation between system HPR and C. butyricum cell count. At the same time, other microorganisms, such as Bifidobacterium spp. and Klebsiella spp., were the predominant ones throughout the whole operation and possibly caused the unsatisfied biohydrogen production. The composition of microorganisms is the principal factor affecting biohydrogen production. Aside from the well-known hydrogen-producing Clostridium spp., several other microorganisms not only coexist but can also significantly affect system performance. The monitoring method established in the present study provides a fast quantification procedure to help operators understand how the system works and therefore quickly respond in operations.  相似文献   

18.
Natural microbial consortia from hot spring samples were used to developed thermophilic mixed cultures for biohydrogen production from cassava starch processing wastewater (CSPW). Significant hydrogen production potentials were obtained from three thermophilic mixed cultures namely PK, SW and PR with maximum hydrogen production yields of 249.3, 180 and 124.9 mL H2/g starch, respectively from raw cassava starch and 252.4, 224.4 and 165.4 mL H2/g starch, respectively from gelatinized cassava starch. Acetic acid-ethanol and acetic-lactic acid type fermentation were observed in cassava starch fermentation, based on three thermophilic mixed cultures performance. The thermophilic mixed cultures PK, SW and PR exhibited the maximum hydrogen yield of 287, 264 and 232 mL H2/g starch in CSPW, respectively corresponding to 53%, 48.7% and 42.8% of the theoretical values. Phylogenetic analysis of thermophilic mixed cultures revealed that members involved cassava starch degrading bacteria and hydrogen producers in both raw cassava starch and CSPW were phylogenetically related to the Thermoanaerobacterium saccharolyticum, Thermoanaerobacterium thermosaccharolyticum, Anoxybacillus sp., Geobacillus sp. and Clostridium sp.  相似文献   

19.
Substrate bioavailabity is one of the critical factors that determine the relative biohydrogen (bioH2) yield in fermentative hydrogen production and bioelectricity output in a microbial fuel cell (MFC). In the present undertaking, batch bioH2 production and MFC-based biolectricity generation from ultrasonically pretreated palm oil mill effluent (POME) were investigated using heat-pretreated anaerobic sludge as seed inoculum. Maximum bioH2 production (0.7 mmol H2/g COD) and COD removal (65%) was achieved at pH 7, for POME which was ultrasonically pretreated at a dose of 195 J/mL. Maximum value for bioH2 productivity and COD removal at this sonication dose was higher by 38% and 20%, respectively, than unsonicated treatments. In batch MFC experiments, the same ultrasound dose led to reduced lag-time in bioelectricity generation with concomitant 25% increase in bioelectricity output (18.3 W/m3) and an increase of COD removal from 30% to 54%, as compared to controls. Quantitative polymerase chain reaction (qPCR) tests on sludge samples from batch bioH2 production reflected an abundance of gene fragments coding for both clostridial and thermoanaerobacterial [FeFe]-hydrogenase. Fluorescence in situ hybridization (FISH) tests on sludge from MFC experiments showed Clostridium spp. and Thermoanaerobacterium spp. as the dominant microflora. Results suggest the potential of ultrasonicated POME as sustainable feedstock for dark fermentation-based bioH2 production and MFC-based bioelectricity generation.  相似文献   

20.
Most dark fermentation (DF) studies had resorted to above-ambient temperatures to maximize hydrogen yield, without due consideration of the net energy gain. In this study, literature data on fermentative hydrogen production from glucose, sucrose, and organic wastes were compiled to evaluate the benefit of higher fermentation temperatures in terms of net energy gain. This evaluation showed that the improvement in hydrogen yield at higher temperatures is not justified as the net energy gain not only declined with increase of temperature, but also was mostly negative when the fermentation temperature exceeded 25 °C. To maximize the net energy gain of DF, the following two options for recovering additional energy from the end products and to determine the optimal fermentation temperature were evaluated: methane production via anaerobic digestion (AD); and direct electricity production via microbial fuel cells (MFC). Based on net energy gain, it is concluded that DF has to be operated at near-ambient temperatures for the net energy gain to be positive; and DF + MFC can result in higher net energy gain at any temperature than DF or DF + AD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号