首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fault trees and event trees have for decades been the most commonly applied modelling tools in both risk analysis in general and the risk analysis of hydrogen applications including infrastructure in particular. It is sometimes found challenging to make traditional Quantitative Risk Analyses sufficiently transparent and it is frequently challenging for outsiders to verify the probabilistic modelling.Bayesian Networks (BN) are a graphical representation of uncertain quantities and decisions that explicitly reveal the probabilistic dependence between the variables and the related information flow. It has been suggested that BN represent a modelling tool that is superior to both fault trees and event trees with respect to the structuring and modelling of large complex systems. This paper gives an introduction to BN and utilises a case study as a basis for discussing and demonstrating the suitability of BN for modelling the risks associated with the introduction of hydrogen as an energy carrier.In this study we explore the benefits of modelling a hydrogen refuelling station using BN. The study takes its point of departure in input from a traditional detailed Quantitative Risk Analysis conducted by DNV during the HyApproval project. We compare and discuss the two analyses with respect to their advantages and disadvantages. We especially focus on a comparison of transparency and the results that may be extracted from the two alternative procedures.  相似文献   

2.
Hydrogen has been used as chemicals and fuels in industries for last decades. Recently, it has become attractive as one of promising green energy candidates in the era of facing with two critical energy issues such as accelerating deterioration of global environment (e.g. carbon dioxide emissions) as well as concerns on the depletion of limited fossil sources. A number of hydrogen fueling stations are under construction to fuel hydrogen-driven vehicles. It would be indispensable to ensure the safety of hydrogen station equipment and operating procedure in order to prevent any leak and explosions of hydrogen: safe design of facilities at hydrogen fueling stations e.g. pressurized hydrogen leak from storage tanks. Several researches have centered on the behaviors of hydrogen ejecting out of a set of holes of pressurized storage tanks or pipes. This work focuses on the 3D simulation of hydrogen leak scenario cases at a hydrogen fueling station, given conditions of a set of pressures, 100, 200, 300, 400 bar and a set of hydrogen ejecting hole sizes, 0.5, 0.7, 1.0 mm, using a commercial computational fluid dynamics (CFD) tool, FLACS. The simulation is based on real 3D geometrical configuration of a hydrogen fueling station that is being commercially operated in Korea. The simulation results are validated with hydrogen jet experimental data to examine the diffusion behavior of leak hydrogen jet stream. Finally, a set of marginal safe configurations of fueling facility system are presented, together with an analysis of distribution characteristics of blast pressure, directionality of explosion. This work can contribute to marginal hydrogen safety design for hydrogen fueling stations and a foundation on establishing a safety distance standard required to protect from hydrogen explosion in Korea being in the absence of such an official requirement.  相似文献   

3.
A prototype hydrogen detection system using the micro-thermoelectric hydrogen sensor (micro-THS) was developed for the safety of hydrogen infrastructure systems, such as hydrogen stations. We have designed a detection part with a pressure proof enclosure adoptable for the international standard of Exd II CT3, and carried out an explosion strength test, explosion and fire hazard tests, and an impact test. The hydrogen sensing performance of the detection part of this prototype system showed a good linear relationship between the sensing signal and hydrogen concentrations in air, for a wide range of hydrogen concentrations from 10 ppm to 40,000 ppm (4 vol.%). This prototype detection system was installed in the outdoor field of the hydrogen station and the response for H2 gas in air of 100 ppm, 1000 ppm, and 10000 ppm was tested monthly for 1 year.  相似文献   

4.
Hydrogen, as a future energy carrier, is receiving a significant amount of attention in Japan. From the viewpoint of safety, risk evaluation is required in order to increase the number of hydrogen refueling stations (HRSs) implemented in Japan. Collecting data about accidents in the past will provide a hint to understand the trend in the possibility of accidents occurrence by identifying its operation time However, in new technology; accident rate estimation can have a high degree of uncertainty due to absence of major accident direct data in the late operational period. The uncertainty in the estimation is proportional to the data unavailability, which increases over long operation period due to decrease in number of stations. In this paper, a suitable time correlation model is adopted in the estimation to reflect lack (due to the limited operation period of HRS) or abundance of accident data, which is not well supported by conventional approaches. The model adopted in this paper shows that the uncertainty in the estimation increases when the operation time is long owing to the decreasing data.  相似文献   

5.
In order for fuel cell vehicles to develop a widespread role in society, it is essential that hydrogen refuelling stations become established. For this to happen, there is a need to demonstrate the safety of the refuelling stations. The work described in this paper was carried out to provide experimental information on hydrogen outflow, dispersion and explosion behaviour. In the first phase, homogeneous hydrogen–air mixtures of a known concentration were introduced into an explosion chamber and the resulting flame speed and overpressures were measured. Hydrogen concentration was the dominant factor influencing the flame speed and overpressure. Secondly, high-pressure hydrogen releases were initiated in a storage room to study the accumulation of hydrogen. For a steady release with a constant driving pressure, the hydrogen concentration varied as the inlet airflow changed, depending on the ventilation area of the room, the external wind conditions and also the buoyancy induced flows generated by the accumulating hydrogen. Having obtained this basic data, the realistic dispersion and explosion experiments were executed at full-scale in the hydrogen station model. High-pressure hydrogen was released from 0.8 to 8.0 mm nozzle at the dispenser position and inside the storage room in the full-scale model of the refuelling station. Also the hydrogen releases were ignited to study the overpressures that can be generated by such releases. The results showed that overpressures that were generated following releases at the dispenser location had a clear correlation with the time of ignition, distance from ignition point.  相似文献   

6.
The polymer electrolyte membrane fuel cell (PEMFC) using reformate gas as fuel is regarded as an attractive solution for the near‐term introduction of fuel cells in stationary or mobile power generation market. With respect to hydrogen feeding, the reformate gas fuelling involves additional polarization losses because of the hydrogen dilution and the impurities contained in the gas. In this paper a one‐dimensional model has been developed to investigate the behaviour of a PEMFC operating with reformate gas mixture. The model, based on a semi‐empirical approach, considers the kinetic reactions in the anode side taking into account the effect of reverse water–gas shift (RWGS) due to the presence of CO2 in the fuel. As it is well known, the exhaust stream from fuel reformers can contain a high carbon dioxide concentration (>20%) that can have a detrimental effect on the fuel cell performance because of the combination of the dilution and the formation of CO by the RWGS reaction. The numerical simulation results have been compared with the experimental data, obtained in the test room of Industrial Engineering Department of Cassino University, and a good match has been observed. The model has been developed by using a simplified approach that, nevertheless, can allow to obtain a good numerical prediction of the fuel cell performance reducing the simulation time and computational efforts. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

7.
As the popularity of fuel cell vehicles continues to rise in the global market, production and supply of low-carbon hydrogen are important to mitigate CO2 emissions. We propose a design for a hydrogen refueling station with a proton exchange membrane electrolyzer (PEM-EL)-based electrolysis system (EL-System) and photovoltaic generation (PV) to supply low-carbon hydrogen. Hydrogen is produced by the EL-System using electricity from PV and the power grid. The system was formulated as a mixed integer linear programming (MILP) model to allow analysis of optimal operational strategies. Case studies with different objective functions, CO2 emission targets, and capacity utilization of the EL-System were evaluated. Efficiency characteristics of the EL-System were obtained through measurements. The optimized operational strategies were evaluated with reference to three evaluation indices: CO2 emissions, capacity utilization, and operational cost of the system. The results were as follows: 1) Regardless of the objective function, the EL-System generally operated in highest efficiency state, and optimal operation depended on the efficiency characteristics of the EL-System; 2) mitigation of CO2 emissions and increase in capacity utilization of the EL-System required trade-offs; and 3) increased capacity utilization of the EL-System showed two opposing effects on hydrogen retail price.  相似文献   

8.
The scroll pump has a great potential to recirculate hydrogen in a fuel-cell vehicle (FCV) because of its high efficiency, low noise and vibration, reliable operation, and a wide range of adjustable flow. This paper presents three-dimensional transient computational fluid dynamics (CFD) modelling of a scroll-type hydrogen pump used in FCVs, including leakage flow through both the radial clearance (RC) and axial clearance (AC). A dynamic mesh was generated for the moving orbiting scroll, and high-quality hexahedral structured grids with sufficient grid-density were applied to the clearances to solve the multi-scale problem. The pressure and velocity fields were obtained at different rotating angles to reveal the dynamic characteristics in the compression chambers. The simulation results showed that the radial leakage through AC has more significant influence on the volumetric efficiency than the tangential leakage through RC, especially on scroll-type hydrogen pumps. The presented modelling and simulation methods were validated experimentally by operating a scroll air compressor at different speeds and pressure ratios. The volumetric efficiency of the scroll pump was 85.39% with 0.02 mm AC and 0.02 mm RC, 81.43% with 0.02 mm AC and 0.04 mm RC, and 70.17% with 0.04 mm AC and 0.02 mm RC. Further, it was found that the performance of scroll-type hydrogen pumps is more sensitive to rotating speed than air scroll pumps under the same conditions. With hydrogen, the volumetric efficiency increased by 30.68% when the rotating speed was increased from 3000 r·min?1 to 6000 r·min?1; with air, the volumetric efficiency increased by 12.81%. Therefore, it is necessary to consider both AC and RC in the CFD modelling of scroll machines, particularly in the case of hydrogen scroll pumps.  相似文献   

9.
This study seeks to enhance the site selection procedure for decision-makers to select the most effective wind-powered hydrogen refueling station via the aid of Fuzzy Multi-criteria Decision-making (FMCDM) approaches. To accomplish the purpose of the study, technical, economic, environmental, geographical, and social aspects constitute the influential criteria for prioritizing the eight aptest cities of Iran. Then, the Fuzzy Multi-criteria Optimization and Compromise Solution (FVIKOR) is employed to ascertain which alternative should be chosen as the most efficient one with respect to the criteria. In addition to several non-fuzzy MCDM techniques, the Fuzzy Technique for Order of Preference by Similarity to Ideal Solution (FTOPSIS) and a novel integrated method are applied for validation. Moreover, an FMCDM approach coupling FTOPSIS and FVIKOR has been introduced for the prioritization of different alternatives while many conflicting criteria exist. The simulation results of fuzzy and non-fuzzy approaches suggest that Manjil is the best option for the purpose of study. The numerical findings also imply utilizing a 100-kW turbine in Manjil generates 548,376 kWh of electricity, resulting in the prevention of 109,675 kg of CO2 emissions and in the production of 8876 kg of hydrogen annually.  相似文献   

10.
This paper investigates the performance of a hydrogen refueling system that consists of a polymer electrolyte membrane electrolyzer integrated with photovoltaic arrays, and an electrochemical compressor to increase the hydrogen pressure. The energetic and exergetic performance of the hydrogen refueling station is analyzed at different working conditions. The exergy cost of hydrogen production is studied in three different case scenarios; that consist of i) off-grid station with the photovoltaic system and a battery bank to supply the required electric power, ii) on-grid station but the required power is supplied by the electric grid only when solar energy is not available and iii) on-grid station without energy storage. The efficiency of the station significantly increases when the electric grid empowers the system. The maximum energy and exergy efficiencies of the photovoltaic system at solar irradiation of 850 W m-2 are 13.57% and 14.51%, respectively. The exergy cost of hydrogen production in the on-grid station with energy storage is almost 30% higher than the off-grid station. Moreover, the exergy cost of hydrogen in the on-grid station without energy storage is almost 4 times higher than the off-grid station and the energy and exergy efficiencies are considerably higher.  相似文献   

11.
Promoting fuel cells has been one of China's ambitious hydrogen policies in the past few years. Currently, several hydrogen fueling stations (HRSs) are under construction in China to fuel hydrogen-driven vehicles. In this regard, it is necessary to assess the risks of hydrogen leakage in HRSs. Aiming at conducting a comprehensive consequence assessment of liquid hydrogen (LH2) leakage on China's first liquid hydrogen refueling station (LHRS) in Pinghu, a pseudo-source model is established in the present study to simulate the LH2 leakage using a commercial CFD tool, FLACS. The effects of the layout of the LHRS, leakage parameters, and local meteorological conditions on the LH2 leakage consequence has been assessed from the perspectives of low-temperature hazards and explosion hazards. The obtained results reveal that considering the prevailing southeast wind in Pinghu city, the farthest low-temperature hazard distance and lower flammable limit (LFL) -distance occurs in the leakage scenario along the north direction. It is found that the trailer parking location in the current layout of the LHRS will worsen the explosion consequences of the LH2 leakage. Moreover, the explosion will completely destroy the control room and endanger people on the adjacent road when the leakage equivalent diameter is 25.4 mm. The performed analyses reveal that as the wind speed increases, the explosion hazard decreases.  相似文献   

12.
The expected increase of hydrogen fuel cell vehicles has motivated the emergence of a significant number of studies on Hydrogen Refuelling Stations (HRS). Some of the main HRS topics are sizing, location, design optimization, and optimal operation. On-site green HRS, where hydrogen is produced locally from green renewable energy sources, have received special attention due to their contribution to decarbonization. This kind of HRS are complex systems whose hydraulic and electric linked topologies include renewable energy sources, electrolyzers, buffer hydrogen tanks, compressors and batteries, among other components. This paper develops a linear model of a real on-site green HRS that is set to be built in Zaragoza, Spain. This plant can produce hydrogen either from solar energy or from the utility grid and is designed for three different types of services: light-duty and heavy-duty fuel cell vehicles and gas containers. In the literature, there is a lack of online control solutions developed for HRS, even more in the form of optimal online control. Hence, for the HRS operation, a Model Predictive Controller (MPC) is designed to solve a weighted multi-objective online optimization problem taking into account the plant dynamics and constraints as well as the disturbances prediction. Performance is analysed throughout 210 individual month-long simulations and the effect of the multi-objective weighting, prediction horizon, and hydrogen selling price is discussed. With the simulation results, this work shows the suitability of MPC for HRS control and its significant economic advantage compared to the rule-based control solution. In all simulations, the MPC operation fulfils all required services. Moreover, results show that a seven-day prediction horizon can improve profits by 57% relative to a one-day prediction horizon; that the battery is under-sized; or that the MPC operation strategy is more resolutive for low hydrogen selling prices.  相似文献   

13.
A quantitative risk assessment of human life during the operation of a hydrogen refueling station (HRS) is conducted. We calculate the risks for three accident scenarios: a hydrogen leak from the external piping surrounding a dispenser, a hydrogen leak from an accumulator connection piping and a hydrogen leak from a compressor/connection piping in the HRS. We first calculate the probability of accident by multiplying the estimated leak frequency with the incident occurrence probability considering the ignition probability and failure probability of the safety barrier systems obtained through event tree analysis for each scenario. We next simulate the blast and flame effects of the ignition of concentration fields formed by hydrogen leakage. We then use existing probit functions to estimate the consequences of eardrum rupture, fatalities due to displacement by the blast wave, fatalities due to head injuries, first-degree burns, second-degree burns, and fatal burn injuries by accident scenario, leak size, and incident event, and we estimate the risk distribution in 1-m cells. We finally assess the risk reduction effects of barrier placement and the distance to the dispenser and quantify the risk level that HRSs can achieve under existing law. Quantitative risk assessment reveals that the risk for a leak near the dispenser is less than 10−6 per year outside a distance of 6 m to the dispenser. The risk for a leak near the accumulators and compressors exceeds 10−4 per year within a distance of 10 m from the ignition point. A separation of 6 m to the dispenser and a barrier height of 3 m keep the fatal risk from burns to the workers, consumers and residents and passersby below the acceptable level of risk. Our results therefore show that current laws sufficiently mitigate the risks posed by HRSs and open up the possibility for a regulatory review.  相似文献   

14.
Compressed hydrogen is delivered by trailers in steel cylinders at 19.6 MPa in Japan. Kawasaki Heavy Industries, Ltd. developed two compressed hydrogen trailers with composite cylinders in collaboration with JX Nippon Oil in a project of the New Energy and Industrial Technology Development Organization (NEDO).The first trailer, which was the first hydrogen trailer with composite cylinder in Japan, has 35 MPa cylinders and the second trailer has 45 MPa cylinders. These trailers have been operated transporting hydrogen and feedstock to hydrogen refueling stations without the accident. This paper describes the safety design, including compliance with regulations, the influence of vibrations, and safety verification in case of a collision.  相似文献   

15.
This paper presents a numerical investigation of hydrogen storage in a metal hydrid bed. For this purpose, a two-dimensional mathematical model which considers complex heat and mass transfer and fluid flow during the hydriding process is accomplished in this study. The coupled differential equations are solved with numerical method based on integrations of governing equation over finite control volumes. The driving force for fluid flow is considered to be pressure difference due to the temperature distribution in the system. It is found that fluid flow enhances the local hydriding rate in the system by driving the hot fluid to the colder regions. The numerical results were found to agree satisfactorily with the experimental data available in the literature. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

16.
Reliable hydrogen fueling stations will be required for the successful commercialization of fuel cell vehicles. An evolving hydrogen fueling station has been in operation in Irvine, California since 2003, with nearly five years of operation in its current form. The usage of the station has increased from just 1000 kg dispensed in 2007 to over 8000 kg dispensed in 2011 due to greater numbers of fuel cell vehicles in the area. The station regularly operates beyond its design capacity of 25 kg/day and enables fuel cell vehicles to exceed future carbon reduction goals today. Current limitations include a cost of hydrogen of $15 per kg, net electrical consumption of 5 kWh per kg dispensed, and a need for faster back-to-back vehicle refueling.  相似文献   

17.
Hydrogen station siting plays an important role in hydrogen-energy infrastructure construction, and it's different from gas station siting. A gas station has a unitary way of fuel transport and a unitary fuel supplier, hence no consideration given to factors like fuel supplier and way of fuel transport at the time of siting it. However, hydrogen for a hydrogen fueling station can be supplied jointly from a couple of different sources nearby. Since there is a diversity of hydrogen price and productivity between different sources, hydrogen fueling station siting also entails consideration of the effect of the proportions of hydrogen supplied by the sources on hydrogen's life cycle cost. With the purpose of minimizing hydrogen's life cycle cost, this paper creates a mathematical model for station siting, largely for the case that each station can get hydrogen supply from combined multiple sources, and considers the effect of geographical information factors on station siting. The effect of geographical information factors on such siting is described herein in two cases to avoid selecting a must-not-build location and rebuilding into a gasoline-hydrogen fueling station at an existing gas station location. The latter can reduce station construction and operating costs. By creating a particle swarm optimization (PSO) example for station siting with Shanghai-Nanjing Expressway and constructing a position particle swarm in the form of 5D vector in order to optimize 5 station locations at the same time as well a weight particle swarm in the form of 2D matrix in order to optimize the multi-source hydrogen supply programs, the paper works out optimal station construction locations on condition of multi-source hydrogen supply, multi-source hydrogen supply programs, ways of storage and transport and corresponding hydrogen's optimal life cycle cost.  相似文献   

18.
The safety of the nuclear hydrogen production system is a key issue that cannot be ignored in the future commercialization. The reasonable arrangement of obstacles can effectively improve the safety of the system under accident conditions. In this paper, based on the high-pressure hydrogen storage tank model of a nuclear hydrogenation plant, two mechanisms by which obstacles can effectively improve safety are analyzed. In order to determine the obstacle design scheme with outstanding effect, the response surface methodology is used to study the influence of the structural parameters and spatial position parameters of obstacles of different shapes, and the comprehensive performance of different obstacles is compared by the TNO multi-energy method. The results show that the semi-cylindrical surface can control the separation distance within 141 m at a lower processing cost, which has good engineering utilization value. This study can provide a valuable reference for the design of nuclear hydrogen production systems.  相似文献   

19.
This work presents a multi-physics model used for the design and diagnosis of the alkaline electrolyzers. The model is based on a new approach that allows to choose precisely the design parameters of a new electrolyzer even if it is not commercially available and predicting energy consumption, efficiency and rate of hydrogen production, taking into account to their physical state and various operating conditions. The approach differs from those of conventional models of the following: It allows the characterization of the electrolyzer based on its structural parameters in a relatively short time (few minutes) compared with the conventional approach which need experimental data collected for few weeks (Ulleberg). The approach allows describing a range of alkaline electrolyzers, while semi-empirical models found in literature are inherent to a specific electrolyzer. In addition, the model takes into account the variation of all structural parameters (geometry, materials and their evolution depending on operating conditions) and operational parameters of the electrolyzer (temperature, pressure, concentration, bulk bubbling and recovery rate of electrode surface by the bubble), while the models in the literature involve only the temperature. The developed multi-physics model was programmed in a Matlab Simulink® environment and an alkaline electrolyzer’s simulation tool was developed. The simulation tool was validated using two industrial (Stuart and Phoebus) electrolyzers with different structures and power rates. Simulation results reproduced experimental data with good accuracy (less than 0.9%). The simulation tool was also used to compare the energy efficiency of two hydrogen production systems. The first one is based on atmospheric electrolyzer with a compressor for hydrogen storage and the second one is a barometric electrolyzer (under pressure) with its auxiliary devices to identify the effective mode of hydrogen production according to the physical state and operating conditions of the electrolyzer. The analysis of results revealed that the second mode of hydrogen production is more efficient and confirms the results of the literature based solely on the thermodynamic approach (K. Onda et al) without the input of the power consumed by power overvoltages.  相似文献   

20.
Hydrogen refueling station (HRS) capacity and location depend on the users, which makes it difficult to select the most favorable option before potential users are actually identified. As in Croatia, at least for now, there are no hydrogen users, this study considers a wide range of HRS capacities and their different configurations. These include hydrogen production and charging station within one existing wind farm in Croatia or both nearby the users, the hydrogen production within the wind farm and the charging station nearby the users, while hydrogen is delivered to the station with a tube trailer, and configuration of hydrogen production within the wind farm with a mobile charging station in case of several users in different locations. Each HRS configuration is evaluated by the obtained levelized cost of hydrogen depending on the capital, and operation and maintenance costs within the HRS techno-economic analysis provided.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号