首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Laser ignition of hydrogen–air mixture was carried out in a constant volume combustion chamber (CVCC) at 10 bar initial chamber filling pressure and 373 K chamber temperature. A Q-switched Nd:YAG laser at 1064 nm with a pulse duration of 6–9 ns was used for plasma generation and ignition of combustible hydrogen–air mixture. Pressure–time history of different hydrogen–air mixtures was measured in the CVCC and flammability limits of hydrogen–air mixture were measured. Flame kernel development was investigated for different air–fuel mixtures using Shawdowgraphy and flame propagation distances were calculated. Minimum ignition energy was measured for hydrogen–air mixtures of different air–fuel ratios and effect laser pulse energy on pressure–time history in the CVCC was experimentally measured. Upon increasing the laser pulse energy, time taken to attain peak cylinder pressure reduced which resulted in faster combustion in hydrogen–air mixtures however the peak cylinder pressure remained similar.  相似文献   

2.
Laser-induced spark ignition of lean hydrogen–air mixtures was experimentally investigated using nanosecond pulses generated by Q-switched Nd:YAG laser (wavelength 1064 nm) at initial pressure of 3 MPa and temperature 323 K in a constant volume combustion chamber. Laser ignition has several advantages over conventional ignition systems especially in internal combustion engines, hence it is necessary to characterise the combustion phenomena from start of plasma formation to end of combustion. In the present experimental investigation, the formation of laser plasma by spontaneous emission technique and subsequently developing flame kernel was measured. Initially, the plasma propagates towards the incoming laser. This backward moving plasma (towards the focusing lens) grows much faster than the forward moving plasma (along the direction of laser). A piezoelectric pressure transducer was used to measure the pressure rise in the combustion chamber. Hydrogen–air mixtures were also ignited using a spark plug under identical experimental conditions and results are compared with the laser ignition ones.  相似文献   

3.
Understanding of the chemical kinetics and heat transfer mechanism within micro-combustors is essential for the development of stable-combustion technology. Computational Fluid Dynamics (CFD) based numerical simulation has been proven to be an effective approach to analyze the performance of combustion under various conditions. The objective of this paper is to study hydrogen-assisted catalytic combustion of methane. It is proved that methane conversion rate decreases as the inlet velocity increases. The most suitable inlet velocity was 0.2 m/s, while the inlet temperature was 900 K. The ignition temperature will decrease considerably when hydrogen content of the fuel was increased with a fixed value of equivalent ratio, meanwhile, the moment of the ignition temperature advances and methane conversion rate also rises accordingly. This is useful for optimization micro combustion fuel.  相似文献   

4.
Experiments are performed on continuous detonation combustion of ternary hydrogen–liquid propane–air mixture in a large-scale annular combustor 406 mm in outer diameter with an annular gap of 25 mm. Liquid propane is fed into the combustor at the time when sustained continuous-detonation combustion of hydrogen–air mixture is attained therein. Mass flow rates of hydrogen, propane and air in the experiments ranged from 0.1 to 0.5 kg/s (hydrogen), 0.1 to 0.5 kg/s (propane), and 5 to 12 kg/s (air). Continuous-detonation combustion of liquid propane in air is obtained for the first time due to addition of hydrogen rather than due to enrichment of air with oxygen. Combustor operation with a single continuously rotating detonation wave (DW) for about 0.1 s has been obtained when the flow rates of propane and air remained constant while the flow rate of hydrogen was rapidly decreasing.  相似文献   

5.
Since the rapid development of hydrogen stationary and vehicle fuel cells the last decade, it is of importance to improve the prediction of overpressure generated during an accidental explosion which could occur in a confined part of the system. To this end, small-scale vented hydrogen–air explosions were performed in a transparent cubic enclosure with a volume of 3375 cm3. The flame propagation was followed with a high speed camera and the overpressure inside the enclosure was recorded using high frequency piezoelectric transmitters. The effects of vent area and ignition location on the amplitude of pressure peaks in the enclosed volume were investigated. Indeed, vented deflagration generates several pressures peaks according to the configuration and each peak can be the dominating pressure. The parametric study concerned three ignition locations and five square vent sizes.  相似文献   

6.
To research the quality of the hydrogen–air mixture formation and the combustion characteristics of the hydrogen fueled engine under different hydrogen injection timings, nozzle hole positions and nozzle hole diameter, a three-dimensional simulation model for a PFI hydrogen internal combustion engine with the inlet, outlet, valves and cylinder was established using AVL Fire software. In the maximum torque condition, research focused on the variation law of the total hydrogen mass in the cylinder and inlet and the space distribution characteristics and variation law of velocity field, concentration field and turbulent kinetic energy under different hydrogen injection parameters (injection timings, nozzle hole positions and nozzle hole area) in order to reveal the influence of these parameters on hydrogen–air mixture formation process. Then the formation quality of hydrogen–air mixture was comprehensively evaluated according to the mixture uniformity coefficient, the remnant hydrogen percentage in the inlet and restraining abnormal combustion (such as preignition and backfire). The results showed that the three hydrogen injection parameters have important influence on the forming quality of hydrogen–air mixture and combustion state. The reasonable choice of the nozzle hole position of hydrogen, nozzle hole diameter and the hydrogen injection time can improve the uniformity of the hydrogen–air mixing in the cylinder of the hydrogen internal combustion engine, and the combustion heat release reaction is more reasonable. At the end of the compression stroke, the equivalence ratio uniform coefficient increased at first and then decreased with the beginning of the hydrogen injection. When hydrogen injection starting point was with 410–430°CA, equivalence ratio uniform coefficient was larger, and ignition delay period was shorter so that the combustion performance index was also good. And remnant hydrogen percentage in the inlet was less, high concentration of mixed gas in the vicinity of the inlet valve also gathered less, thus suppressing the preignition and backfire. With the increase of the distance between the nozzle and the inlet valve, the selection of the hydrogen injection period is narrowed, and the optimum hydrogen injection time was also ahead of time. The results also showed that it was favorable for the formation of uniform mixing gas when the nozzle hole diameter was 4 mm.  相似文献   

7.
In this paper, entropy generation in counter-flow premixed hydrogen–air combustion confined by planar opposing jets is investigated for the first time. The effects of the equivalence ratio and the inlet Reynolds number (corresponding to the global stretch rate) on entropy generation are studied by numerical evaluating the entropy generation equation. The lattice Boltzmann model proposed in our previous work, instead of traditional numerical methods, is used to solve the governing equations for combustion process. Through the present study, three interesting features of this kind of combustion, which are quite different from that reported in previous literature on entropy generation analysis for reactive flows, are revealed. Moreover, it is observed that the whole investigated domain can be divided into two parts according to the predominant irreversibilities. The total entropy generation number can be approximated as a linear increasing function of the equivalence ratio and the inlet Reynolds number for all the cases under the present study.  相似文献   

8.
In this study, the experiment study about the laminar burning velocity and the flame stability of CO2 diluted natural gas–hydrogen–air mixture was conducted in a constant volume combustion vessel by using the high-speed schlieren photography system. The unstretched laminar burning velocity and the Markstein length at different hydrogen fractions, dilution ratios and equivalence ratios and with different initial pressures were obtained. The flame stability was studied by analyzing the Markstein length, the flame thickness, the density ratio and the flame propagation schlieren photos. The results showed that the unstretched laminar burning velocity would be reduced with the increase of the initial pressure and dilution ratio and would be increased with the increase of the hydrogen fraction of the mixture. Meanwhile, the Markstein length would be increased with the increase of the equivalence ratio and the dilution ratio. Slight flaws occurred at the early stage. At a specific equivalence ratio, a higher initial pressure and hydrogen fraction would cause incomplete combustion.  相似文献   

9.
Cyclic variations of direct-injection combustion fueled with natural gas–hydrogen fuel blends were experimentally studied using a constant volume vessel. Direct-injection combustion was realized by injecting the high-pressure fuel into the vessel. Flame propagating photographs and pressure history in the vessel were recorded at various hydrogen volumetric fractions in the fuel blends (from 0% to 40%) under the same lean-burn conditions where the overall equivalence ratios are 0.6 and 0.8, respectively. The effect of fuel–air mixture inhomogeneous distribution and hydrogen addition on the cyclic variations was analyzed via flame development photographs and pressure-derived combustion parameters. The results indicated that the cyclic variations were initiated at the early stage of flame development. The flame kernel is closely concentric to the spark electrode and flame pattern has less irregular with hydrogen addition. Direct-injection natural gas combustion can achieve the stable lean combustion along with low cyclic variations due to the mixture stratification in the vessel. The cyclic variations decreased with the increase of hydrogen addition and this trend is more obvious at ultra-lean-burn condition. Hydrogen addition weakened the effect from turbulent flow on flame propagating process, thus reduce the cyclic variations related to the gas flow. There exists interdependency between the early combustion stage and the subsequent combustion process for direct-injection combustion.  相似文献   

10.
The stoichiometric methane–hydrogen–air freely propagated laminar premixed flames at normal temperature and pressure were calculated by using PREMIX code of CHEMKIN II program with GRI-Mech 3.0 mechanism. The mole fraction profiles and the rate of production of the dominant reactions contributing to the major species and some selected intermediate species in the flames of methane–hydrogen–air were obtained. The rate of production analysis was conducted and the effect of hydrogen addition on the reactions of methane–air mixtures combustion was analyzed by the dominant elementary reactions for specific species. The results showed that the mole fractions of major species CH4, CO and CO2 were decreased while their normalized values were increased as hydrogen is added. The rate of production of the dominant reactions contributing to CH4, CO and CO2 shows a remarkable increase as hydrogen is added. The role of H2 in the flame will change from an intermediate species to a reactant when hydrogen fraction in the blends exceeds 20%. The enhancement of combustion with hydrogen addition can be ascribed to the significant increase of H, O and OH in the flame as hydrogen is presented. The decrease of the mole fractions of CH2O and CH3CHO with hydrogen addition suggests a potential in the reduction of aldehydes emissions of methane combustion as hydrogen is added. The methane oxidation reaction pathways will move toward the lower carbon reaction pathways when hydrogen is available and this has the potential in reducing the soot formation. Chemical kinetics effect of hydrogen addition has a little influence on NO formation for methane combustion with hydrogen addition.  相似文献   

11.
The premixed combustion of a lean hydrogen–air mixture is analyzed in this study to examine various properties and flame stabilization. A two-dimensional (2D) analysis of a microscale combustor is performed with various shapes of bluff bodies (e.g., circular and triangular). Nine bluff bodies are placed at the entrance of the microscale combustor and solved with 2D governing equations. The analysis is performed with the three velocities of 10, 20, and 30 m/s, but the equivalence ratio is fixed in all cases. The various characteristics of the microscale combustor are studied such as the temperature of the wall, difference in peak temperature, the mean velocity at the outlet, and temperature of the exhaust gases. Flame stabilization depends on various factors such as bluff body shape and size, and the velocity of the fuel–air mixture at the inlet and recirculation zone. In comparison to all bluff body cases, we observe that the wall blade bluff body is the most efficient (low exhaust gas temperature, large recirculation zone, low mean velocity at the outlet of the microcombustor, and high wall temperature) compared with all eight other bluff body cases. Combustion efficiency is directly proportional to the wall temperature, meaning that the microcombustor with wall blade bluff bodies is more efficient with a stabilized flame. The simulation results are compared with published data on an L/D ratio of 15.  相似文献   

12.
Lean premixed combustion of hydrogen–syngas/methane fuel mixtures was investigated experimentally to demonstrate fuel flexibility of a two-section porous burner. The un-insulated burner was operated at atmospheric pressure. Combustion was stabilized at the interface of silicon-carbide coated carbon foam of 26 pores per centimeter (ppcm) and 4 ppcm. Methane (CH4) content in the fuel was decreased from 100% to 0% (by volume), with the remaining amount split equally between carbon monoxide (CO) and hydrogen (H2), the two reactive components of the syngas. Experiments for different fuel mixtures were conducted at a fixed air flow rate, while the fuel flow rate was varied to obtain a range of adiabatic flame temperatures. The CO and nitric oxide (NOxNOx) emissions were measured downstream of the porous burner, in the axial direction to identify the post-combustion zone and in the transverse direction to quantify combustion uniformity. For a given adiabatic flame temperature, increasing H2/CO content in the fuel mixture decreased both the CO and NOxNOx emissions. Presence of H2/CO in the fuel mixture also decreased temperature near the lean blow-off limit, especially for higher percentages of CO and H2 in the fuel.  相似文献   

13.
The separate and combined effects of Soret diffusion of the hydrogen molecule (H2) and radical (H) on the structure and propagation speed of the freely-propagating planar premixed flames, and the strain-induced extinction response of premixed and nonpremixed counterflow flames, were computationally studied for hydrogen–air mixtures using a detailed reaction mechanism and transport properties. Results show that, except for the conservative freely-propagating planar flame, Soret diffusion of H2 increases the fuel concentration entering the flame structure and as such modifies the mixture stoichiometry and flame temperature, which could lead to substantial increase (decrease) of the flame speed for the lean (rich) mixtures respectively. On the other hand, Soret diffusion of H actively modifies its concentration and distribution in the reaction zone, which in turn affects the individual reaction rates. In particular, the reaction rates of the symmetric, twin, counterflow premixed flames, especially at near-extinction states, can be increased for lean flames but decreased for rich flames, whose active reaction regions are respectively located at, and away from, the stagnation surface. However, such a difference is eliminated for the single counterflow flame stabilized by an opposing cold nitrogen stream, as the active reaction zone up to the state of extinction is always located away from the stagnation surface. Finally, the reaction rate is increased in general for diffusion flames because the bell-shaped temperature distribution localizes the H concentration to the reaction region which has the maximum temperature.  相似文献   

14.
《能源学会志》2020,93(2):634-641
The expediency is substantiated for the use of a vortex counter-current circulation flow of water steam and the stoichiometric hydrogen-oxygen mixture as a source of heat generation. That flow is essential for the purpose of making efficient models of high-temperature combustion chambers for the cogeneration cycles.An experimental investigation was carried out of hydrogen-oxygen mixture combustion in a counter-current combustion chamber-superheater. Operating range values of heat power were obtained. A maximum temperature of the superheated steam at the combustion chamber outlet was 1350 K. There were determined the optimal modes of hydrogen-oxygen mixture outflow ensuring its steady combustion in the counter-current flow core of the water steam.  相似文献   

15.
The laminar burning velocities of hydrogen–air and hydrogen–methane–air mixtures are very important in designing and predicting the progress of combustion and performance of combustion systems where hydrogen is used as fuel. In this work, laminar flame velocities of hydrogen–air and different composition of hydrogen–methane–air mixtures (from 100% hydrogen to 100% methane) have been measured at ambient temperatures for variable equivalence ratios (ER=0.8–3.2ER=0.83.2). A modified test rig has been developed from the former Cardiff University ‘Cloud Chamber’ for this experimental study. The rig comprises of a 250 mm length cylindrical stainless steel explosion bomb enclosed at one end with a stainless steel plug which houses an internal stirrer to allow mixing. The other end is sealed with a 120 mm diameter round quartz window. Optical access for filming flame propagation is afforded via two diametrically opposed quartz windows in both sides. Flame speeds are determined within the bomb using a high-speed Schlieren photographic technique. This method is an accurate way to determine the flame–speed and the burning velocities were then derived using a CHEMKIN computer model to provide the expansion ratio. The design of the test facility ensures the flame is laminar which results in a spherical flame which is not affected by buoyancy. The experimental study demonstrated that increasing the hydrogen percentage in the hydrogen–methane mixture brought about an increase in the resultant burning velocity and caused a widening of the flammability limits. This experiments also suggest that a hydrogen–methane mixture (i.e. 30% hydrogen+70% methane) could be a competitive alternative fuel for existing combustion plants.  相似文献   

16.
The main objective of this study is effect of the various fuel–air mixing section geometries on the unstable combustion. For the purpose of observing the combustion pressure oscillation and phase difference at each of the dynamic pressure results, the multi-channel dynamic pressure transducers were located on the combustor and inlet mixing section. By using an optically accessible quartz-type combustor, we were able to OH* measurements to characterize the flame structure and heat release oscillation with the use of a high-speed ICCD camera. In this study, we observed two dominant instability frequencies. Lower frequencies were measured around 240–380 Hz, which were associated with a fundamental longitudinal mode of combustor length. Higher frequencies were measured around 410–830 Hz. These were related to the secondary longitudinal mode in the combustion chamber and the secondary quarter-wave mode in the inlet mixing section. These second instability mode characteristics are coupled with the conditions of the combustor and inlet mixing section acoustic geometry. Also, these higher combustion instability characteristics include dynamic pressure oscillation of the inlet mixing section part, which was larger than the combustor section. As a result, combustion instability was strongly affected by the acoustically coupling of the combustor and inlet mixing section geometry.  相似文献   

17.
18.
Homogeneous charge compression ignition (HCCI) is an alternative combustion strategy employed for automotive systems. It has a higher thermal efficiency with lower nitric oxides and particulate matter emissions that are below current emission requirements. However, owing to difficulties associated with combustion control, HCCI engines have disadvantages in terms of combustion instability, such as low-speed-low-load or high-speed-high-load conditions.This study investigates the effects of different parameters on HCCI engine combustion using numerical methods. The parametric study is carried out at low loads (25% part load), and a reference intake temperature of 550 K is used to preheat the air–fuel mixture. The GRI-3.0 chemical reaction mechanism involving 53 species and 325 reactions is used for 1-D simulations describing the combustion process fueled with methane and hydrogen added methane. By changing the variables, including compression ratio, excess air ratio, and hydrogen content, the combustion behavior is investigated and discussed. The results show that an increase in compression ratio resulted in a faster start of combustion and caused higher in cylinder pressure and heat-release rate. When the excess air ratio was increased, the start of combustion was delayed and lower in-cylinder pressure and heat release rate were observed. The results were similar for varying compression ratios.  相似文献   

19.
In the present work, the laminar premixed acetylene–hydrogen–air and ethanol–hydrogen–air flames were investigated numerically. Laminar flame speeds, the adiabatic flame temperatures were obtained utilizing CHEMKIN PREMIX and EQUI codes, respectively. Sensitivity analysis was performed and flame structure was analyzed. The results show that for acetylene–hydrogen–air flames, combustion is promoted by H and O radicals. The highest flame speed (247 cm/s) was obtained in mixture with 95% H2–5% C2H2 at λ = 1.0. The region between 0.95 < XH2 < 1.0 was referred to as the acetylene-accelerating hydrogen combustion since the flame speed increases with increase the acetylene fraction in the mixture. Further increase in the acetylene fraction decreases the H radicals in the flame front. In ethanol–hydrogen–air mixtures, the mixture reactivity is determined by H, OH and O radicals. For XH2 < 0.6, the flame speed in this regime increases linearly with increasing the hydrogen fraction. For XH2 > 0.8, the hydrogen chemistry control the combustion and ethanol addition inhibits the reactivity and reduces linearly the laminar flame speed. For 0.6 < XH2 < 0.8, the laminar flame speed increases exponentially with the increase of hydrogen fraction.  相似文献   

20.
This paper presents results of an experimental investigation on detonation wave propagation in semi-confined geometries. Large scale experiments were performed in layers up to 0.6 m filled with uniform and non-uniform hydrogen–air mixtures in a rectangular channel (width 3 m; length 9 m) which is open from below. A semi confined driver section is used to accelerate hydrogen flames from weak ignition to detonation. The detonation propagation was observed in a 7 m long unobstructed part of the channel. Pressure measurements, ionization probes, soot-records and high speed imaging were used to observe the detonation propagation. Critical conditions for detonation propagation in different layer thicknesses are presented for uniform H2/air-mixtures, as well as experiments with uniform H2/O2 mixtures in a down scaled transparent channel. Finally detail investigations on the detonation wave propagation in H2/air-mixtures with concentration gradients are shown.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号