首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
We studied the effects of NE-10064 (azimilide), a new antiarrhythmic agent reported to be a selective blocker of the slowly activating component of the delayed rectifier, IKs. In ferret papillary muscles, NE-10064 increased effective refractory period (ERP) and decreased isometric twitch tension in a concentration-dependent manner (0.3-30 microM). Increases in ERP showed reverse use-dependence, and were greater at 1 than at 3 Hz. In contrast, changes in tension were use dependent, with larger decreases observed at 3 than at 1 Hz. In guinea pig ventricular myocytes, NE-10064 (0.3-3 microM) significantly prolonged action potential duration (APD) at 1 Hz. At 3 Hz, NE-10064 (0.3-1 microM) increased APD only slightly, and at 10 microM decreased APD and the plateau potential. NE-10064 potently blocked the rapidly activating component of the delayed rectifier, IKr (IC50 0.4 microM), and inhibited IKs (IC50 3 microM) with nearly 10-fold less potency. NE-10064 (10 microM) did not block the inward rectifier potassium current (IKl). NE-10064 (10 microM) blocked the L-type calcium current (ICa) in a use-dependent manner; block was greater at 3 than at 1 Hz. We conclude that (a) NE-10064's block of potassium currents is relatively selective for IKr over IKs, (b) NE-10064 inhibits ICa in a use-dependent fashion, and (c) NE-10064's effects on ERP and tension in papillary muscle as well as APD and action potential plateau level in myocytes may be explained by its potassium and calcium channel blocking properties.  相似文献   

2.
This study examined the ionic mechanism of ibutilide, a class III antiarrhythmic in clinical use, on freshly isolated human atrial cells. Cells had resting potentials of -71.4 +/- 2.4 mV, action potentials with overshoot of 36.8 +/- 1.8 mV, duration of 265 +/- 89 msec at 90% repolarization and slow repolarization (n = 16). Ibutilide, at 10(-7) M, markedly increased action potential duration. Four types of outward currents were detected: Ito, Iso, a delayed rectifier and IK1. Ibutilide had no inhibitory effect on these outward currents at 10(-7) M (n = 28). In K(+)-free solutions and -40 mV holding potential, mean peak inward current at 20 mV was -1478 +/- 103 pA (n = 12). Ibutilide increased this current to -2347 +/- 75 pA at 10(-7) M, with half maximal effect (Kd) of 0.1 to 0.9 nM between -10 and +40 mV (n = 21). At similar concentrations, the drug increased APD, with Kd of 0.7 and 0.23 nM at 70 and 90% repolarization, respectively (n = 8). Ibutilide shifted the mid-point of the steady-state inactivation curve from -21 to -12.2 mV (n = 6), and reduced current decline during repetitive depolarization (n = 5). The drug induced inward current was carried by Na+o through a nifedipine inhibited inward channel because Na+o removal eliminated the effect, and nifedipine abolished the inward current and the drug induced APD prolongation. We propose that a Na+ current through the L-type Ca++ channel mediates ibutilide's potent clinical class III antiarrhythmic action.  相似文献   

3.
OBJECTIVE: The effects of BRL-32872, azimilide and a selective blocker of the delayed rectifier potassium current, E-4031, were measured at two different basic cycle lengths (BCL), 300 and 1000 ms. Calcium channel antagonists of sarcolemmal (verapamil and nitrendipine) and sarcoplasmic reticulum (ryanodine) membranes were used to investigate whether the inhibition of the calcium current or the calcium release from the sarcoplasmic reticulum could alter the reverse-rate dependence of E-4031 on action potential duration (APD). METHODS: Guinea pig isolated papillary muscles were superfused with a Tyrode solution maintained at 37 degrees C and stimulated at a BCL of 300 or 1000 ms. The standard microelectrode technique was used to record action potential parameters and to study the effects of azimilide, BRL-32872 and E-4031. E-4031 was superfused at increasing concentrations (0.01, 0.03, 0.1 and 0.3 microM) in the absence or in the presence of verapamil (0.3 microM), nitrendipine (0.03 microM) or ryanodine (0.1 microM). RESULTS: BRL-32872 and azimilide induced a self-limited concentration-dependent increase in APD. The effect of BRL-32872 was not dependent on the stimulation frequency whereas the effect of azimilide was significantly reduced at the shorter BCL. E-4031 induced a concentration-dependent increase in APD at both stimulation BCL. The increase in APD was significantly more pronounced in fibres stimulated at a BCL of 1000 ms than in fibres stimulated at a BCL of 300 ms, characterising the reverse-frequency dependent effect of class III antiarrhythmic agents. The reverse-frequency dependence in action potential prolongation induced by E-4031 was significantly reduced in the presence of a low concentration of verapamil (0.3 microM), nitrendipine (0.03 microM), or ryanodine (0.1 microM. CONCLUSION: The results show that BRL-32872, in contrast to azimilide, does not induce the reverse-rate dependency of action potential prolongation typically produced by class III antiarrhythmic agents such as E-4031. Our results also show that reverse-rate dependency induced by E-4031 can be reduced by the simultaneous administration of a low concentration of a calcium channel antagonist or an inhibitor of the release of calcium from the sarcoplasmic reticulum. It is thus suggested that compounds with a suitable balance of potassium and calcium antagonistic activities may have less adverse effects than purely selective potassium channel blockers.  相似文献   

4.
Regional differences in action potential characteristics and membrane currents were investigated in subendocardial, midmyocardial and subepicardial myocytes isolated from the left ventricular free wall of guinea-pig hearts. Action potential duration (APD) was dependent on the region of origin of the myocytes (P < 0.01, ANOVA). Mean action potential duration at 90 % repolarization (APD90) was 237 +/- 8 ms in subendocardial (n = 30 myocytes), 251 +/- 7 ms in midmyocardial (n = 30) and 204 +/- 7 ms in subepicardial myocytes (n = 36). L-type calcium current (ICa) density and background potassium current (IK1) density were similar in the three regions studied. Delayed rectifier current (IK) was measured as deactivating tail current, elicited on repolarization back to -45 mV after 2 s step depolarizations to test potentials ranging from -10 to +80 mV. Mean IK density (after a step to +80 mV) was larger in subepicardial myocytes (1.59 +/- 0.16 pA pF-1, n = 16) than in either subendocardial (1.16 +/- 0.12 pA pF-1, n = 17) or midmyocardial (1. 13 +/- 0.11 pA pF-1, n = 21) myocytes (P < 0.05, ANOVA). The La3+-insensitive current (IKs) elicited on repolarization back to -45 mV after a 250 ms step depolarization to +60 mV was similar in the three regions studied. The La3+-sensitive tail current, (IKr) was greater in subepicardial (0.50 +/- 0.04 pA pF-1, n = 11) than in subendocardial (0.25 +/- 0.05 pA pF-1, n = 9) or in midmyocardial myocytes (0.38 +/- 0.05 pA pF-1, n = 11, P < 0.05, ANOVA). The contribution of a Na+ background current to regional differences in APD was assessed by application of 0.1 microM tetrodotoxin (TTX). TTX-induced shortening of APD90 was greater in subendocardial myocytes (35.7 +/- 7.1 %, n = 11) than in midmyocardial (15.7 +/- 3. 8 %, n = 10) and subepicardial (20.2 +/- 4.3 %, n = 11) myocytes (P < 0.05, ANOVA). Regional differences in action potential characteristics between subendocardial, midmyocardial, and subepicardial myocytes isolated from guinea-pig left ventricle are attributable, at least in part, to differences in IK and Na+-dependent currents.  相似文献   

5.
The purpose of this study was to examine the effects of 5-HT4-receptor agonists cisapride, mosapride citrate (mosapride), and zacopride on action potentials (APs) in guinea pig isolated papillary muscles. Cisapride (0.1-3 microM) concentration-relatedly prolonged the duration of APs (APD) without affecting the other AP parameters. Mosapride and its main metabolite M1 (des-4-fluoro-benzyl-mosapride) did not affect APs at 10 microM. Zacopride at 10 microM shortened APD, and the APD-shortening effect was not affect by GR113808 (10 microM), a 5-HT4-receptor antagonist. The cisapride (1 microM)-induced prolongation of APD was not affected by GR113808 (10 microM), ritanserin (10 microM), a 5-HT2A/2C-receptor antagonist, or prazosin (10 microM), an alpha 1-receptor antagonist. The same concentrations of GR113808, ritanserin, and prazosin did not affect APD. Clofilium, a class III antiarrhythmic agent, prolonged APD; the effect was more pronounced at a stimulus frequency of 0.3 Hz than at 2.0 Hz. Cisapride did not exert such reverse use dependence, suggesting that its mechanism of action is different from that of clofilium. These results suggest that cisapride prolongs APD without involvement of 5-HT2, 5-HT4, or alpha 1 receptors. Mosapride is unlikely to induce the prolongation of electrocardiographic QT intervals correlated with the prolongation of APD in isolated ventricular muscles.  相似文献   

6.
The physiological and pharmacological actions of norepinephrine (NE) on neurons of the intermediate subnucleus of the lateral septum (LSI) were examined using intracellular recordings in rat brain-slices. Bath-applied NE inhibited 72.5%, excited 5.5% and had no effect on 22% of LSI neurons tested; this study focused on the inhibitory effects of NE. In current clamp recordings, 100 microM NE produced a hyperpolarization of 10.82+/-0.72 mV (n=84) with a decrease in input resistance. In voltage-clamp, NE produced a direct, post-synaptic outward current of 206.8+/-22 pA (n=37) with a 64. 3+/-4.9% increase in input conductance (IC50-17.7+/-4 microM). The NE-induced inhibition was mimicked by the alpha2-agonist, UK14,304, but not by the alpha1- or beta-adrenoceptor agonists. The alpha2-agonist, clonidine, had a weak effect in LSI neurons. Interestingly, the magnitude of the UK14,304-induced response varied between cells (ranging from 29.5 to 320% of the maximal NE inhibition), possibly suggesting the involvement of alpha2A-(high affinity for UK14,304) and non-alpha2A (low affinity for UK14,304) adrenoceptor subtypes. While the alpha2-antagonists, yohimbine, rauwolscine and idazoxan blocked NE-induced inhibition in all neurons tested, the prototypical alpha1-antagonist, prazosin produced a variable degree of block (9-58%), further indicating the possible involvement of alpha2A (prazosin-insensitive) and non-alpha2A (prazosin-sensitive) receptors. However a lack of more selective pharmacological tools precludes definitive classification of the alpha2-receptor-mediated responses into different subtypes. The alpha2-receptor-mediated current in LSI neurons displayed Ba2+-sensitive inward rectification, reversed polarity near EK and was sensitive to external K+. In conclusion, NE inhibits LSI neurons via alpha2-adrenoceptor subtypes.  相似文献   

7.
INTRODUCTION: Reverse rate-dependence, a lessening in Class III antiarrhythmic agent action potential duration (APD) prolongation as heart rate is increased, has been proposed to be related to an incomplete deactivation of the slow component (IKs) of the delayed rectifier K+ current (IK). The rate-dependent properties of block of IK by azimilide were compared to E-4031, which selectively blocks the rapid component (IKr) of IK, in guinea pig ventricular muscle. METHODS AND RESULTS: Azimilide prolonged APD in isolated papillary muscles in a concentration-dependent manner and to a greater degree than E-4031. Both agents prolonged APD less at fast than slow rates, consistent with a similar reverse rate-dependent effect. Isolation of azimilide block of IKs by subtraction of APD during E-4031 plus azimilide from E-4031 alone revealed rate-independent prolongation of APD. In voltage clamp experiments on single ventricular myocytes, activation of IKs was similar following 30 seconds of conditioning pulses of physiological duration (125 to 200 msec) with either a fast (cycle length 250 msec) or slow (cycle length 2000 msec) rate. The block of IKs by azimilide 3 microM was greater after a fast conditioning pulse train. CONCLUSIONS: Selective block of IKs prolongs APD in a rate-independent manner. In voltage clamped myocytes, no evidence of a rate-dependent accumulation of IKs was observed. These findings support a mechanism of reverse rate-dependent APD prolongation by Class III antiarrhythmic agents that block IKr independent of IKs.  相似文献   

8.
1. The effects of rilmakalim, a potassium channel opener, were studied on rabbit cardiac Purkinje, ventricular muscle and atrial fibers, with the use of conventional microelectrode techniques. 2. Rilmakalim (0.24-7.2 microM) shortened, in a concentration-dependent manner, the action potential duration (APD) in Purkinje and ventricular muscle without affecting other parameters of the action potential. Pinacidil (30-300 microM) also decreased the APD of Purkinje fibers. 3. Rilmakalim (2.4 microM) and cromakalim (100 microM) hyperpolarized and abolished abnormal automaticity of cardiac Purkinje fibers pretreated with barium (0.2-0.3 mM). Glibenclamide (5 microM) blocked the hyperpolarizing effect. 4. Stable early afterdepolarizations induced in Purkinje fibers by berberine (100 microM) were reversibly blocked by rilmakalim (2.4 microM), which also suppressed late afterdepolarizations induced in Purkinje fibers treated with ouabain (0.3-0.5 microM). 5. The rate of spontaneous discharges of the rabbit sinoatrial node was not affected by rilmakalim (7.2 microM) or by pinacidil (100 microM). Both agents were also unable to affect the APD of atrial muscle fibers. 6. In cardiac Purkinje fibers, tetraethylammonium (TEA; 20 mM) significantly reduced the effects of rilmakalim (2. 4 microM) on the APD. However, neither TEA nor glibenclamide (100 microM) reduced the shortening of the APD induced by dinitrophenol (30 microM) or by salicylate (1 mM).  相似文献   

9.
The combination of quinidine and sotalol is very effective in prevention of recurrent sustained ventricular tachycardia (SVT). The cellular mechanisms underlying this efficacy were examined in guinea pig papillary muscle, using standard microelectrode techniques and stimulation frequencies of 1, 2, and 3 Hz. Action potential duration (APD) and effective refractory period (ERP) were measured under control conditions, after 30-min perfusion with quinidine (5 microM) or sotalol (6 microM), and after an additional 30 min of quinidine + sotalol (5 and 6 microM, respectively). Quinidine, sotalol, and quinidine + sotalol all prolonged APD at 90% repolarization (APD90) by 9 +/- 1, 13 +/- 1, and 15 +/- 2%, respectively (at 3 Hz; p = NS, comparison of the three drugs; p < 0.05 for each drug as compared with control). Quinidine + sotalol prolonged ERP (at 3 Hz) by 27 +/- 2% as compared with 11 +/- 2% after sotalol and 18 +/- 2% after quinidine alone (p < 0.05). As a result, the ERP/APD ratio was increased by the combination to 0.87 +/- 0.2 (p < 0.05) as compared with 0.78 +/- 0.2 for control 0.79 +/- 0.1 for sotalol, and 82 +/- 0.1 for quinidine (at 3 Hz). Although sotalol alone decreased the maximum rate of depolarization of phase 0 of the AP (Vmax) by only 3 +/- 2% (p = NS), sotalol attenuated Vmax decrease of quinidine (at 3 Hz) from 40 +/- 4 to 16 +/- 3% (p < 0.05). Effects at 1 and 2 Hz were similar.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The effect of Gd3+ on the delayed rectifier potassium current (IK) in single guinea-pig ventricular myocytes was tested using whole-cell patch-clamp techniques. It was found that Gd3+ blocked 70% of the IK tail current at a concentration of 100 microM. The EC50 was 24 microM. Action potential durations were, however, reduced, consistent with a predominant effect on depolarizing L-type Ca2+ current (Ica.L). In the presence of 5 microM nifedipine Gd3+ prolonged the action potential. Using carbon fibres to stretch cells we observed that 10 microM Gd3+ was not effective in reducing a large stretch-activated increase in resting calcium. Modelling studies using the OXSOFT HEART program suggest that this lack of response is influenced by blockade of repolarizing current but is best reproduced by additional blockade of Ca2+ extrusion via the Na(+)-Ca2+ exchanger. When Gd3+ is used as a blocker of stretch-activated channels its actions upon both Ica.L and IK must therefore be accounted for.  相似文献   

11.
The effects of histamine on the intracellular Ca2+ concentration ([Ca2+]i), action potential and membrane currents were assessed in single atrial myocytes prepared from guinea-pigs. Histamine caused a concentration-dependent increase in the [Ca2+]i transient in indol/AM loaded myocytes when stimulated electrically at 0.5 Hz. However, the maximum increase in [Ca2+]i transient produced by histamine was less than 50% of that elicited by isoprenaline. The histamine-induced increase in [Ca2+]i transient was significantly inhibited by chlorpheniramine, but not by cimetidine. Pretreatment with nifedipine nearly completely suppressed the histamine-induced increase in [Ca2+]i transient. Cyclopiazonic acid did not affect the histamine response. In the whole-cell current-clamp mode of the patch-clamp method, both histamine and isoprenaline prolonged action potential duration (APD) in atrial myocytes. In the presence of Co2+ or nifedipine, the isoprenaline-induced APD prolongation was abolished and an APD shortening effect was manifested, while histamine still increased APD. The APD prolongation elicited by histamine was reversed by chlorpheniramine. In the voltage-clamp mode, the histamine-sensitive membrane current was inwardly rectifying and reversed close to the calculated value of the K+ equilibrium potential. Histamine had no apparent effect on L-type Ca2+ current, in contrast to the pronounced effect of isoprenaline. These results indicate that in guinea-pig atrial myocytes stimulation of H1-receptors with histamine does not directly activate Ca2+ channels but causes an elevation of [Ca2+]i transient by increasing Ca2+ influx through the channels during the prolonged repolarization of action potentials resulting from inhibition of the outward K+ current.  相似文献   

12.
1. Microelectrode recording techniques were used to study the effects of several potassium channel blockers which are considered to be Class III antiarrhythmic compounds. The effects of (+)-sotalol, UK-66,914, UK-68,798 and E-4031 on action potential duration (APD) were determined in guinea-pig isolated papillary muscles. The compounds were evaluated under normoxic or hypoxic/ischaemic conditions at 36.5 degrees C and compared to glibenclamide, which is considered to be a blocker of ATP-dependent potassium channels. Prolongation of action potential duration at 90% repolarization (APD90) was taken as an indirect measure of potassium channel blockade. 2. Under normoxic conditions, the Class III compounds prolonged APD in a concentration-dependent manner. According to EC15 values, the order of potency of the Class III compounds was found to be UK-68,798 > E-4031 > UK-66,914 > (+)-sotalol. Glibenclamide did not significantly prolong APD90 under normoxic conditions. 3. Perfusion with an experimental hypoxic or ischaemic bathing solution produced qualitatively similar effects on action potentials. Over a period of 20-25 min in either of the experimental solutions, there was a small decrease in action potential amplitude (APA) and a prominent shortening of APD. The ischaemic solution also depolarized the resting membrane potential by about 15 mV. 4. (+)-Sotalol and UK-66,914 did not reverse the shortening of APD induced by perfusion with hypoxic Krebs solution. High concentrations of glibenclamide (10 microM) and UK-68,798 (30 and 60 microM) partially reversed the hypoxia-shortened APD. Glibenclamide was more potent and exhibited a greater time-dependent action than UK-68,798. 5. During experimental ischaemia, the Class III compound E-4031 (10 microM, n = 7) produced small, but significant, increases in the APD90 (11 +/-3 ms after 20 min) which were not clearly time-dependent(14 +/- 4 ms after 30 min). UK-68,798 (10 microM) also produced a small, but insignificant, increase in APD90(12 =/-6 ms at 20 min, n = 4). Higher concentrations of UK-68,798 (30 and 60 microM, n = 4) did not produce a consistently significant increase in APD90 during ischaemia: significance was only attained after 20 min in the presence of 60 microM UK-68,798 (24 +/- 12 ms). However, in marked contrast to the effects of the Class III compounds, glibenclamide (10 microM) produced large time-dependent increases in ischaemic APD90 (34 +/- 11 ms at 7 min, n = 9) which were significant 15 min or more after drug addition(52 +/- 12 ms at 20 min, n = 7; 74 +/- 5 ms at 30 min, n = 6).6. The present microelectrode data suggest that blockers of ATP-dependent potassium channels, such as glibenclamide, might prove to be more effective than Class III compounds against ischaemia-induced shortening of cardiac action potentials.  相似文献   

13.
Acetylcholine often affects cardiac action potential repolarization only during augmented adrenergic tone, i.e., the phenomenon of accentuated antagonism. Since chronic exercise involves repeated changes in autonomic outflow, we determined whether it also influenced adrenergic/cholinergic interactions in isolated canine cardiac tissue. Using standard micro-electrode techniques in thin ventricular subendocardial slices isolated from exercised (EX: 8-10 wk daily exercise) and sedentary (SED): 8-10 wk cage rest) dogs, we examined transmembrane potential responses to isoproterenol (ISO: 10(-8), 10(-7), 10(-6) M) and to ISO in the presence of ACH (10(-5) M). Control transmembrane characteristics at BCL = 500 ms were similar for EX (N = 8 dogs) and SED (N = 9 dogs). ISO (10(-6) M) decreased action potential duration at 50% repolarization (APD50): EX = -29 +/- 15 ms; SED = 11 ms and at 90% repolarization (APD90): EX = -37 +/- 17 ms; and SED = -24 +/- 14 ms (P > 0.05, EX vs SED). ACH alone did not alter APD. With ACH (10(-5) M), delta APD50 with ISO (10(-6) M) was -5 +/- ms and 0 +/- 5 ms for EX and SED, respectively; delta APD90 was -8 +/- 4 ms and -8 +/- 7 ms for EX and SED, respectively (P > 0.05, EX vs SED). Thus, ACH antagonized ISO-mediated acceleration of repolarization equally in both groups. Chronic daily exercise does not influence adrenergic/cholinergic interactions at the cellular level.  相似文献   

14.
Two different types of action potentials were observed among the pyramidal cells and interneurons in cat motor cortex: the narrow action potentials and the wide action potentials. These two types of action potentials had similar rising phases (528.8 +/- 77.0 vs 553.1 +/- 71.8 mV/ms for the maximal rising rate), but differed in spike duration (0.44 +/- 0.09 vs 1.40 +/- 0.39 ms) and amplitude (57.31 +/- 8.22 vs 72.52 +/- 8.31 mV), implying that the ionic currents contributing to repolarization of these action potentials are different. Here we address this issue by pharmacological manipulation and using voltage-clamp technique in slices of cat motor cortex. Raising extracellular K+ concentration (from 3 mM to 10 mM), applying a low dose of 4-aminopyridine (2-200 microM) or administering a low concentration of tetraethylammonium (0.2-1.0 mM) each not only broadened the narrow action potentials, but also increased their amplitudes. In contrast, high K+ medium or low dose of tetraethylammonium only broadened the wide action potentials, leaving their amplitudes unaffected, and 4-aminopyridine had only a slight broadening effect on the wide spikes. These results implied that K+ currents were involved in the repolarization of both types of action potentials, and that the K+ currents in the narrow action potentials seemed to activate much earlier than those in the wide spikes. This early activated K+ current may counteract the rapid sodium current, yielding the extremely brief duration and small amplitude of the narrow spikes. The sensitivity of the narrow spikes to 4-aminopyridine may not be mainly attributed to blockade of the classical A current (IA), because depolarizing the membrane potential to inactivate IA did not reproduce the effects of 4-aminopyridine. Blockade of Ca2+ influx slowed the last two-thirds repolarization of the wide action potentials. On the contrary, the narrow action potentials were not affected by Ca(2+)-current blockers, but if they were first broadened by 4-aminopyridine or tetraethylammonium, subsequent application of Ca(2+)-free medium caused further broadening, suggesting that the narrow action potentials were too brief to activate the Ca(2+)-activated potassium currents for their repolarization. Therefore, the effects of low concentrations of tetraethylammonium on the narrow spikes appeared to be mainly due to blockade of an outward current that was different from the tetraethylammonium-sensitive Ca(2+)-activated potassium current (IC). In the neurons with the narrow spikes, voltage-clamp experiments revealed two voltage-gated outward currents that were sensitive to tetraethylammonium and 4-aminopyridine, respectively. Both currents were activated rapidly following the onset of depolarizing steps. Interestingly, the tetraethylammonium-sensitive current was a transient outward current that inactivated rapidly (tau < or = 5 ms), while the 4-aminopyridine-sensitive current was relatively persistent during maintained depolarization. The 4-aminopyridine-sensitive current did not show obvious inactivation even at membrane potential of -40 mV, which completely inactivated the transient tetraethylammonium-sensitive, current. The results indicate that different potassium currents are involved in the repolarization of the narrow and wide action potentials in cat motor cortex. A novel tetraethylammonium-sensitive transient outward current and a 4-aminopyridine-sensitive outward current are responsible for the short duration and small amplitude of the narrow action potentials in the interneurons and some of the layer V pyramidal cells. These two currents are voltage-gated and Ca(2+)-independent. For the wide action potentials that characterize most pyramidal neurons, a Ca(2+)-independent tetraethylammonium-sensitive outward current and a Ca(2+)-activated potassium current are the main contributors to their repolarization.  相似文献   

15.
The effects of 1-(2-amino-4-methanesulfonamidophenoxy)-2-[N-(3,4-dimethoxypheneth yl)-N-methylamino] ethane hydrochloride (KCB-328), in comparison with those of dofetilide, were studied on the action potentials (APs) of isolated guinea pig papillary muscles. KCB-328 (0.003-3 microM) concentration-dependently prolonged the AP duration at 90% repolarization (APD90) at 1- and 3-Hz pacing, and the concentration-response relations at 1 and 3 Hz resemble each other. Dofetilide (0.001-1 microM) also produced the concentration-dependent prolongation of APD90 but more pronouncedly at 1 than at 3 Hz, demonstrating the reverse frequency-dependent effect. KCB-328 at 0.03, 0.1, 0.3, and 1 microM increased APD90 by 11 +/- 1, 19 +/- 1, 25 +/- 1, and 29 +/- 1% at 3 Hz and by 9 +/- 1, 19 +/- 2, 27 +/- 2, and 33 +/- 2% at 1 Hz, respectively. Prolongation of the effective refractory period (ERP) by each drug is parallel to those of APD90 at each pacing frequency. KCB-328 modified neither the maximal velocity of depolarization, amplitude of AP, and resting membrane potential in the fast APs, nor any parameters of the slow APs. In a separate experiment, the effects of KCB-328 on the ERP of contractile response (ERPc) of excised guinea-pig papillary muscles also were studied at 1 and 3 Hz. KCB-328 (0.01-10 microM) lengthened the ERPc in a concentration-dependent and frequency-independent manner as in the electrophysiologic results. This frequency-independent ERPc prolongation by KCB-328 was not influenced by increased extracellular K+ concentration from 4 to 10 mM. These results suggest that KCB-328 might be a selective class III agent with effects that are relatively frequency independent.  相似文献   

16.
Atrial action potential heterogeneity is a major determinant of atrial reentrant arrhythmias, but the underlying ionic mechanisms are poorly understood. To evaluate the basis of spatial heterogeneity in canine right atrial repolarization, we isolated cells from 4 regions: the crista terminalis (CT), appendage (APG), atrioventricular ring (AVR) area, and pectinate muscles. Systematic action potential (AP) differences were noted: CT cells had a "spike-and-dome" morphology and the longest AP duration (APD; value to 95% repolarization at 1 Hz, 270+/-10 ms [mean+/-SEM]); APG and pectinate muscle cells had intermediate APDs (180+/-3 and 190+/-3 ms, respectively; P<0.001 versus CT for each), with APG cells having a small phase 1; and AVR cells had the shortest APD (160+/-4 ms, P<0.001 versus other regions). The inward rectifier and the slow and ultrarapid delayed rectifier currents were similar in all regions. The transient outward K+ current was significantly smaller in APG cells, explaining their small phase 1 and high plateau. L-type Ca2+ current was greatest in CT cells and least in AVR cells, contributing to their longer and shorter APD, respectively. The E-4031-sensitive rapid delayed rectifier K+ current was larger in AVR cells compared with other regions. Voltage- and time-dependent current properties were constant across regions. We conclude that myocytes from different right atrial regions of the dog show systematic variations in AP properties and ionic currents and that the spatial variation in ionic current density may explain AP differences. Regional variation in atrial ionic currents may play an important role in atrial arrhythmia generation and may present opportunities for improving antiarrhythmic drug therapy.  相似文献   

17.
INTRODUCTION: Precipitation of torsades de pointes (TdP) has been shown to be associated with acceleration of heart rate in both experimental and clinical studies. To gain insight into the cellular mechanism(s) responsible for the initiation of acceleration-induced TdP, we studied the effect of acceleration of pacing rate in canine left ventricular epicardial, M region, endocardial, and Purkinje fiber preparations pretreated with E-4031, an IKr blocker known to induce the long QT syndrome and TdP. METHODS AND RESULTS: Standard microelectrode techniques were used. E-4031 (1 to 2 microM) induced early after depolarization (EAD) activity in 31 of 36 M cell, 0 of 10 epicardial, 0 of 10 endocardial, and 9 of 12 Purkinje fiber preparations at basic cycle lengths (BCLs) > or = 800 msec. In 30 of 36 M cells, sudden acceleration from a BCL range of 900 to 4,000 msec to a range of 500 to 1,500 msec induced transient EAD activity if none existed before or increased the amplitude of EADs if already present. Acceleration-induced augmentation of EAD activity was far less impressive and less readily demonstrable in Purkinje fibers (4/12). In M cells, appearance of EAD activity during acceleration usually was accompanied by an abbreviation of action potential duration (APD). Within discrete ranges of rates in the physiologic range, acceleration caused a transient prolongation of APD in 38% of M cells, whether or not a distinct EAD was generated. Acceleration produced still more dramatic APD prolongation and EADs in M cells after the BCL was returned to the original slow rate. Epicardium and endocardium APD showed little change immediately after acceleration. A decrease of BCL as small as 10% and, in some cases, a single premature beat could promote EAD activity and APD prolongation in some M cells. Ryanodine (1 microM, 10/10), flunarizine (10 microM, 3/6), and low Na (97 vs 129 mM, 5/5) abolished the acceleration-induced EAD activity and APD prolongation as well as the EAD activity observed at slow rates in M cells pretreated with E-4031. CONCLUSION: Our results suggest that acceleration from an initially slow rate or a single premature beat can induce or facilitate transient EAD activity and APD prolongation in canine ventricular M cell preparations pretreated with an IKr blocker via a mechanism linked to intracellular calcium loading. Our data provide evidence in support of an important contribution of electrogenic Na/Ca exchange current to this process. These acceleration-induced changes can result in the development of triggered activity as well as a marked dispersion of repolarization in ventricular myocardium and, thus, may contribute to the precipitation of TdP in patients with the congenital (HERG defect) and acquired (drug-induced) long QT syndrome.  相似文献   

18.
1. The purpose of this study was to determine if corpus cavernosum smooth muscle expresses functional postsynaptic alpha2-adrenoceptors (AR). 2. The alpha2-adrenoceptor agonist UK 14,304 elicited concentration-dependent contractions in rabbit corpus cavernosum smooth muscle (CCSM). The half-maximal response occurred at 0.32+/-0.03 microM and the maximum contraction at 10 microM UK 14,304. 3. Pretreatment of CCSM strips with selective alpha2-adrenoceptor antagonists, rauwolscine and RS-15385, produced rightward shifts in the dose-response curves to UK 14,304 (pA2 values 7.1 and 8.5, respectively). In contrast, these antagonists did not alter contraction induced by the alpha1-adrenoceptor agonist phenylephrine (PE) or oxymetazoline. UK 14,304-induced contractions were also inhibited by prazosin (pA2 = 9.08). 4. UK 14,304-induced contractions, unlike those to PE, were highly dependent on the presence of extracellular Ca2+. 5. [3H]-rauwolscine bound to CCSM membranes with high affinity (Kd = 1.5 nM). [3H]-rauwolscine binding was displaced by unlabelled rauwolscine, RS-15385, UK 14,304 and prazosin, but not by PE. 6. UK 14,304 inhibited forskolin and prostaglandin E1 (PGE1)-induced increases in intracellular cyclic AMP concentration in primary cultures of rabbit CCSM cells. 7. These results demonstrate that CCSM expresses Gi-coupled postsynaptic alpha2-adrenoceptors, and activation of these receptors causes contraction of trabecular smooth muscle.  相似文献   

19.
The effects of antiarrhythmic agents, including Classes I and IV and 3-10 mM Mg2+ on aconitine-induced arrhythmias were examined using a conventional microelectrode and patch clamp method in Langendorff-perfused rabbit hearts and isolated guinea-pig ventricular myocytes. Intracoronary application of 0.1 microM aconitine induced polymorphic ventricular tachycardia (PVT) which continued for more than 60 minutes. Application of aconitine to ventricular myocytes caused a prolonged action potential duration (APD) and the appearance of early afterdepolarization (EAD) together with the occurrence of an inward hump of the I-V curve around -60 to -40 mV and increased outward current at positive voltages. Application of 10 microM TTX and 5 mM or higher Mg2+ restored aconitine-induced PVT to sinus rhythm in Langendorff-perfused preparations and also shortened the prolonged APD, demonstrating the abolishment of EAD by aconitine in ventricular myocytes. However, antiarrhythmic agents did not exert such effects. In conclusion, the antiarrhythmic actions of Mg2+ and TTX in aconitine-induced arrhythmia are to abolish EAD and shorten the prolonged APD by suppression of the inward Na+ current around -60 to -40 mV.  相似文献   

20.
BACKGROUND: In cardiac hypertrophy, ECG T-wave changes imply an abnormal sequence of ventricular repolarization. We investigated the hypothesis that this is due to changes in the normal regional differences in action potential duration. We assessed the contribution of potassium- and calcium-dependent currents to these differences. Both the altered sequence of ventricular repolarization and the underlying cellular mechanisms may contribute to the increased incidence of ventricular arrhythmias in hypertrophy. METHODS AND RESULTS: Rats received daily isoproterenol injections for 7 days. Myocytes were isolated from basal subendocardial (endo), basal midmyocardial (mid), and apical subepicardial (epi) regions of the left ventricular free wall. Action potentials were stimulated with patch pipettes at 37 degrees C. The ratio of heart weight to body weight and mean cell capacitance are increased by 22% and 18%, respectively, in hypertrophy compared with controls (P<.001). Normal regional differences in action potential duration at 25% repolarization (APD25) are reduced in hypertrophy (control: endo, 11.4+/-0.9 ms; mid, 8.2+/-0.9 ms; epi, 5.1+/-0.4 ms; hypertrophy: endo, 11.6+/-0.9 ms; mid, 10.4+/-0.8 ms; epi, 7.8+/-0.6 ms). The regional differences in APD25 are still present in 3 mmol/L 4-aminopyridine. Hypertrophy affects APD75 differently, depending on the region of origin of myocytes (ANOVA P<.05). APD75 is shortened in subendocardial myocytes but is prolonged in subepicardial myocytes (control: endo, 126+/-7 ms; epi, 96+/-10 ms; hypertrophy: endo, 91+/-6 ms; epi, 108+/-7 ms). These changes in APD75 are altered by intracellular calcium buffering. CONCLUSIONS: Normal regional differences in APD and the changes observed in hypertrophy are only partially explained by differences in I(tol). In hypertrophy, the normal endocardial/epicardial gradient in APD75 appears to be reversed. This may explain the T-wave inversion observed and will have implications for arrhythmogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号