首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mg2−xSnxNi (x = 0, 0.1, 0.3) alloys were synthesized by reactive ball milling under protective Ar atmosphere and liquid n-heptane. The microstructure and the morphology of the powders were determined by X-ray diffraction and scanning electron microscopy. The as-milled alloys consist of Mg2Ni nanocrystals with an average grain size in the range 3–7 nm, depending on the alloy composition. Sn containing phases were not detected even in the Sn-rich alloy. Obviously, Sn is dissolved in the Mg2Ni intermetallic compound. Gas phase sorption of hydrogen was not observed in the alloys containing Sn (Mg2−xSnxNi; x = 0.1, 0.3). It was suggested that Sn impedes the process of hydrogen molecules decomposition. The as-milled alloys absorbed reversibly hydrogen electrochemically. Mg2Ni alloy showed the highest discharge capacity of 300 mAh/g. The capacity of Mg1.9Sn0.1Ni and Mg1.7Sn0.3Ni was about 260 mAh/g. It was found that Sn improved the cycle life of the electrode.  相似文献   

2.
In order to improve the cycle stability of La–Mg–Ni system (PuNi3-type) hydrogen storage alloy, Ni in the alloy was partly substituted by Fe, Mn and Al, and the electrode alloys La0.7Mg0.3Ni2.55−xCo0.45Mx (M = Fe, Mn, Al; x = 0, 0.1) were prepared by casting and rapid quenching. The effects of the substitution of Fe, Mn and Al for Ni and rapid quenching on the microstructures and electrochemical properties of the alloys were investigated in detail. The results obtained by XRD, SEM and TEM indicate that element substitution has no influence on the phase compositions of the alloys, but it changes the phase abundances of the alloys. Particularly, the substitution of Al and Mn obviously raises the amount of the LaNi2 phase. The substitution of Al and Fe leads to a significant refinement of the as-quenched alloy's grains. The substitution of Al strongly restrains the formation of an amorphous in the as-quenched alloy, but the substitution of Fe is quite helpful for the formation of an amorphous phase. The effects of the substitution of Fe, Mn and Al on the cycle stabilities of the as-cast and quenched alloys are different. The positive influence of the substitution elements on the cycle stabilities of the as-cast alloys is in proper order Al > Fe > Mn, and for as-quenched alloys, the order is Fe > Al > Mn. Rapid quenching engenders an inappreciable influence on the phase composition, but it markedly enhances the cycle stabilities of the alloys.  相似文献   

3.
The La1−xKxCo1−xNbxO3 system was performed by conventional solid state reaction technique using metal oxides. By DSC analysis, the activation energy of crystallization of the powders with x = 0.3 is 388.4 kJ/mol. The crystal structure of the compound reveals a transition from rhombohedral to cubic, and then to orthorhombic structure as the amount of the potassium niobate (KNbO3) increases. It is found that the structure of the samples with x < 0.3 is similar to that of lanthanum cobaltate (LaCoO3), while at the compositions with 0.7 ≥ x ≥ 0.3, the structure transforms to cubic. Finally, with x ≥ 0.7, the structures were similar to that of KNbO3. According to the results of selected-area-diffraction (SAD) patterns and X-ray diffraction (XRD) identifications, the lattice parameters were calculated. The direction of superlattice structure along [2 1 0] was found for x = 0.5 as identified from SAD patterns. The dielectric constants were measured with cubic structure. Dielectric constant (K) decreases with increasing x.  相似文献   

4.
The effect of partial substitution of Ni by Cr in CeNi5 intermetallic compound has been studied by pressure–composition isotherm measurements for different temperatures. The samples were prepared of high purity materials using the standard arc melting technique in argon atmosphere. The structure and the elemental composition of different alloys have been investigated by means of XRD, SEM and EDX techniques. The unit cell volume of the alloy was found to increase with increasing Cr content. In order to calculate the hydrogen storage capacity pressure–composition isotherm has been investigated for CeNi5−xCrx (x = 1, 2) alloys in the temperature and pressure ranges of 293 ≤ T ≤ 333 K and 0.5 ≤ P ≤ 35 bar, respectively. The P–C–T isotherm for different alloys clearly shows the presence of three regions ,  + β and β. The enthalpy and entropy for the systems has also been calculated using Van’t Hoff plot. The variation of enthalpy and entropy with hydrogen content has also been studied.  相似文献   

5.
The hydrogen storage alloys MmNi3.55Mn0.4Al0.3Co0.75−xFex (x = 0.55 and 0.75) were used as negative electrodes in the Ni-MH accumulators. The chronopotentiommetry and the cyclic voltammetry were applied to characterize the electrochemical properties of these alloys. The obtained results showed that the substitution of the cobalt atoms by iron atoms has a good effect on the life cycle of the electrode. For the MmNi3.55Mn0.4Al0.3Co0.2Fe0.55 compound, the discharge capacity reaches its maximum of 210 mAh/g after 12 cycles and then decreases to 190 mAh/g after 30 charge–discharge cycles. However, for the MmNi3.55Mn0.4Al0.3Fe0.75 compound, the discharge capacity reaches its maximum of 200 mAh/g after 10 cycles and then decreases to 160 mAh/g after 30 cycles.

The diffusion behavior of hydrogen in the negative electrodes made from these alloys was characterized by cyclic voltammetry after few activation cycles. The values of the hydrogen coefficient in MmNi3.55Mn0.4Al0.3Co0.2Fe0.55 and MmNi3.55Mn0.4Al0.3Fe0.75 are, respectively, equal to 2.96 × 10−9 and 4.98 × 10−10 cm2 s−1. However, the values of the charge transfer coefficients are, respectively, equal to 0.33 and 0.3. These results showed that the substitution of cobalt by iron decreases the reversibility and the kinetic of the electrochemical reaction in these alloys.  相似文献   


6.
This study concerns the influence of iron for cobalt substitution on the structural, thermodynamic and electrochemical properties of the hydrides of poly-substituted LaNi3.55Mn0.4Al0.3(Co1−xFex)0.75 (0 ≤ x ≤ 1) alloys used as material for negative electrode in Ni-MH batteries. The Fe substitution leads to an increase of the cell parameter, this increase is linear according to the rate of substitution, and a decrease of the equilibrium pressure in agreement with the geometric law. Nevertheless, it is observed that the Fe substitution leads to a deviation from the linear variation between the logarithm of the pressure and the cell volume observed for Co, Mn and Al for Ni substitution. The Fe for Co substitution leads also to a decrease of the solid–gas and electrochemical capacity.  相似文献   

7.
Polycrystalline hydrogen storage alloys based on lanthanum (La) are commercially used as negative electrode materials for the nickel–metal hydride (Ni–MHx) batteries. In this paper, mechanical alloying (MA) was used to synthesize nanocrystalline LaNi4−xMn0.75Al0.25Cox (x=0, 0.25, 0.5, 0.75 and 1.0) hydrogen storage materials. XRD analysis showed that, after 30 h milling, the starting mixture of the elements decomposed into an amorphous phase. Following the annealing in high purity argon at 700 °C for 0.5 h, XRD confirmed the formation of the CaCu5-type structures with a crystallite sizes of about 25 nm. The nanocrystalline materials were used as negative electrodes for a Ni–MHx battery. Cobalt substituting nickel in LaNi4Mn0.75Al0.25 greatly improved the discharge capacity and cycle life of the LaNi5 material. For example, in the nanocrystalline LaNi3.75Mn0.75Al0.25Co0.25 powder, discharge capacities up to 258 mA h g−1 (at 40 mA g−1 discharge current) were measured. Mechanical alloying is a suitable procedure to obtain LaNi5-type alloy powders for electrochemical energy storage.  相似文献   

8.
The effect of iron substitution on the electrochemical behaviour of LaNi3.55Mn0.4Al0.3Co0.75−xFex compounds (x=0, 0.15, 0.55) has been studied by chronopotentiometry and cyclic voltammetry techniques. The maximum capacity decreases linearly from 308 to 239 mAhg−1 when the iron content increases from 0 to 7.3 wt.% (x=0.55). This decrease can be explained by the corrosion of the alloy in the aqueous KOH electrolyte. In spite of this decrease and of the long time needed for the activation, a good stability of discharge capacity was observed in LaNi3.55Mn0.4Al0.3Co0.75−xFex compounds. The reversibility of the electrochemical redox reaction of LaNi3.55Mn0.4Al0.3Co0.75−xFex alloy electrodes has been observed in the alloys least rich in iron. The hydrogen diffusivity in LaNi3.55Mn0.4Al0.3Co0.75−xFex alloy electrodes decreases when increasing the iron content. The obtained values of the hydrogen diffusion coefficient DH, varies between 2.1×10−7 and 8.2×10−9 cm2 s−1 depending on the iron content of the electrode.  相似文献   

9.
A new compound CePt2+xSb2−y (x = 0.125, y = 0.25) was synthesized by arc-melting of the elements. The chemical and structural characterizations were carried out at room temperature on as-cast samples using X-ray diffractometry, metallographic analysis and EDS-microanalysis. According to the results of X-ray single crystal diffraction this antimonide crystallizes in I4cm space group (no. 108), Z = 32, ρ = 12.19 Mg/m3, μ = 89.05 mm−1 (a = 12.5386(3) Å, c = 21.4692(6) Å (crystal I) and a = 12.5455(2) Å, c = 21.4791(5) Å (crystal II)). The structure and composition were confirmed by powder X-ray diffraction (a = 12.4901(2) Å, c = 21.3620(4) Å) and EDS-microanalysis respectively. Isotypic compounds were observed with La and Pr from X-ray powder diffraction of as-cast alloys at room temperature (a = 12.6266(4) Å, c = 21.4589(6) Å for LaPt2+xSb2−y and a = 12.5184(5) Å, c = 21.4178(7) Å for PrPt2+xSb2−y). The CePt2+xSb2−y structure is derived from CaBe2Ge2 (a = 2a0 − 2b0, b = 2a0 + 2b0, c = 2c0) and comprises a new atomic arrangement with both vacancy on 4(b) pyramidal site and substitution of antimony atoms (X) by platinum (B) in the B–XX–B layers (referring to the subcell structure) forming two B––1/2B1/2XX–3/4B and two X–BB–X layers per cell. The structure of CePt2+xSb2−y is compared with those reported before for URh1.6As1.9 and CeNi1.91As1.94.  相似文献   

10.
Spinel LiGaxMn2−xO4 (0 ≤ x ≤ 0.05) cathode materials with phase-pure particles and nano-sized distribution were synthesized by sol–gel method using triethanolamine as the chelating agent. The effects of heat treatment on the physicochemical properties of the spinel LiGaxMn2−xO4 powders were examined with thermogravimetric and differential thermal analysis (TG/DTA), powder X-ray diffraction (XRD) and scanning electron micrograph (SEM). The LiGaxMn2−xO4 (0 ≤ x ≤ 0.05) electrodes were characterized electrochemically by charge/discharge experiments under a current rate of 0.5C at 55 °C. Although the Ga-doped spinel electrode showed smaller initial discharge capacity, it exhibited better cycling performance than the undoped-LiMn2O4 electrode. The dQ/dV versus potential plots at 55 °C revealed that the improvement in cycling performance of the Ga-doped spinel electrode is attributed to stabilization of the spinel structure by the presence of gallium ion.  相似文献   

11.
Structure and magnetic and electrical properties of the polycrystalline compounds LaMn1−xRhxO3 (0 < x ≤ 1) have been investigated. The samples were characterized by X-ray diffraction and Rietveld refinement which confirmed the space group Pnma (No. 62) for all compositions at room temperature. A transformation from O′- to O-type orthorhombic structure is seen near x = 0.6 tending to make the phase unstable. The electrical conductivity measurement shows semiconducting property above room temperature with a rather low activation energy for Mn-rich compositions. Compounds in the region 0.1 ≤ x ≤ 0.9 show ferromagnetic property but the substitution of Rh3+ ion for Mn3+ ion suppresses the ferromagnetism that results in reducing the Curie temperature, TC.  相似文献   

12.
A systematic study of the intergranular properties of Bi1.66Pb0.34Sr2Ca2−xMgxCu3Oy (x = 0, 0.2 and 0.4) samples has been done, using the AC susceptibility technique. The samples were prepared by conventional solid state reaction method. It was found that Mg substitution in place of Ca reduces the intergranular coupling of Bi-2223 system. Analysis of the temperature dependence of the AC susceptibility near the transition temperature (Tc) has been done employing Bean's Critical State Model. The observed variation of intergranular critical current densities (Jc) with temperature indicates that the critical current density decreases by increasing the amount of Mg. The higher electronegativity of Mg in the unit cell promotes more intake of oxygen in the material, and the grain boundaries are in more over-doped regime. These over-doped regions reduce the intergranular coupling and increases weak link behavior of Mg doped samples.  相似文献   

13.
La(Mg1-xAlx) (x=0.2, 0.4, 0.6, 0.8) alloys have been prepared using induction melting followed by annealing. It is found that partial substitution of Mg by Al does not lead to a change in crystal structure, and the alloys have a single LaMg phase when x 〈 0.4. The lattice parameter of the LaMg phase decreases obviously after the partial substitution of Mg by Al. However, further substitution of Mg by Al leads to the coexistence of multiple phases when x ≥ 0.6. The alloys consist of the LaMg, LaAl, LaAl2, and La5Al4 phases. The LaMg phase decreases, whereas the La5Al4 phase increases with the increase in x. The Al-substituted La(Mgo.6Al0.4) alloy can be hydrogenated into the tetragonal LaH3, cubic LaH3, MgH2, and LaPd under 5 MPa at 473 K for 5 d.  相似文献   

14.
Magnetic measurements and band structure calculations were performed on GdCo3−xSix system with x ≤ 0.3. The experimentally determined magnetizations are in rather good agreement with those obtained from band structure calculations. The composition dependence of cobalt moments, at various lattice sites, are analyzed in correlation with the effects of Co 3d–Si 3p bands hybridization.  相似文献   

15.
The electrochemical behaviour of new Mg–Al–RE (RE = Ce, Er) alloys AE91 was investigated in 0.01 M NaCl electrolyte (pH = 12) and compared with that of the most commonly used Mg alloy in the automotive field, the AZ91D. Scanning electron microscopy and quantitative electron probe microanalysis were used to characterize the samples prior to the electrochemical tests. AE91 alloys showed very similar microstructures characterized by a three-phase appearance: a Mg-based solid solution containing only Al and two intermetallic phases γ(Mg17Al12) and (Al1 − xMgx)3Ce or (Al1 − xMgx)2Er. Free corrosion potential measurements, potentiodynamic polarization curves and electrochemical impedance spectroscopy revealed improved passivity behaviour compared to AZ91D alloy. The apparent presence of trace amounts of rare earth oxides in the passive film is presumed to be the reason for the enhanced corrosion resistance of AE91 alloys in the aggressive environment considered.  相似文献   

16.
A series of LaxCeyO1 − x − y films (x = 0–0.54, y = 0–0.58) with thickness of 35–45 nm was deposited by unbalanced magnetron sputtering. High-resolution transmission electron microscope observation shows that La0.24Ce0.34O0.42 film has polycrystalline structure. La2O3 and CeO2 are formed within the LaxCeyO1 − x − y films confirmed by the X-ray diffraction and X-ray photoelectron microscopy. The friction coefficient and residual compressive stress of five kinds of three-element compound films exhibit symmetric distribution with the relative equilibrium of La and Ce atomic concentration within the films. The critical load of all deposited films is between 28 and 33 mN. The friction coefficient of two kinds of rare earth complex oxide films is in the range of 0.08–0.09, which is lower than that of only one kind of rare earth oxide films, and the friction mechanism is discussed.  相似文献   

17.
DSC measurements were carried out for various Fe100−xAlx(x = 5–30 at%) alloys to clear the effects of cold roll and quenching rate from 1173 K. In the case of cold roll free specimens, an exothermic peak was observed at around 530–560 K in quenched specimens and no peaks in slowly cooled specimens. The peak temperature and its exothermic heat depended on the alloy composition. The maximum exothermic heat was obtained for a 25 at% Al alloy and its value were about 1200 J/mol. The peak in a 5 at% Al alloy was remained as a future work. The exothermic heat was affected by the quenching temperature in alloys above 15 at% Al. The peak temperature was decreased by decreasing the quenching temperature. In a 15 at% Al alloy, the peak became negligibly small by quenching from 1023 K. The activation energies in cold roll free specimens were evaluated from the Kissinger analysis and they were 134, 108, 133 and 110 kJ/mol for 15 at% Al, 20 at% Al, 25 at% Al and 30 at% Al alloys, respectively. On the other hand, cold rolled specimens showed an exothermic peak at around 470 K, independently of the cooling rate. Their exothermic heats and temperatures were comparable order to those of furnace cooled and water quenched specimens. The present results suggested that origin of exothermic peaks of all alloys were same in nature and atomic ordering may be related to the exothermic behavior at relatively low temperatures.  相似文献   

18.
The effects of the combined substitution of Y and Ga on the crystallographic structure of Nd2−xYxFe17−yGay compounds with x = 0, 0.5, 1.0, 1.5 and y = 0, 1, 2, 3 have been investigated using X-ray and neutron powder diffractions. Rietveld refinements of the diffraction data indicate that all the samples crystallize in the rhombohedral Th2Zn17-type structure with only small amounts of alpha iron. It is found that the addition of Ga atoms lessens the decreasing rates of the a-axis and unit cell volume V on the Y content but almost does not affect the decreasing rates of the c-axis. However, the substitution of Y has a positive effect on the increasing rates of the a-axis and unit cell volume V on the Ga content but has a very slight effect on the increasing rate of the c-axis. The c/a ratio of Nd2−xYxFe17−yGay as a function of Ga content exhibits a different increase for different Y content owe to the combined effects of Y and Ga on the crystallographic structure. The substitution of Y is found to have little effect on the site occupancy of Ga in Nd2−xYxFe17−yGay. The combined effects of Y and Ga on the bond lengths and ASBL of Nd2−xYxFe17−yGay indicate that more bonds detrimental to ferromagnetic exchange can be modulated into the desirable ferromagnetic exchange distance range through suitable combined substitution, which provides a valuable way to improve the magnetic properties of rare earth-transition intermetallic compounds.  相似文献   

19.
The electrical conductivity (σ), Seebeck coefficient (S), and power factor (σS2) of perovskite-type LaFeO3, La1−xSrxFeO3 [0.1 ≤ x ≤ 0.4] and LaFe1−yNiyO3 [0.1 ≤ y ≤ 0.6] were investigated in the temperature range of 300–1100 K to explore their possibility as thermoelectric materials. The electrical conductivity of LaFeO3 showed semiconducting behavior, and its Seebeck coefficient changed from positive to negative around 650 K with increasing temperature. The electrical conductivity of LaFeO3 increased with the substitutions of Sr and Ni atoms, while its Seebeck coefficient decreased. The Seebeck coefficient of La1−xSrxFeO3 was positive, whereas that of LaFe1−yNiyO3 changed from positive to negative with increasing Ni content. The substitutions of Sr and Ni were effective in increasing the power factor of LaFeO3; 0.0053 × 10−4 Wm−1 K−2 for LaFeO3 (1050 K), 1.1 × 10−4 Wm−1 K−2 for La1−xSrxFeO3 (x = 0.1 at 1100 K) and 0.63 × 10−4 Wm−1 K−2 for LaFe1−yNiyO3 (y = 0.1 at 1100 K).  相似文献   

20.
Xiaofeng Liu  Yunfeng Zhu  Liquan Li   《Intermetallics》2007,15(12):1582-1588
We reported the structure and the notable hydrogen storage properties of the composites Mg100−xNix (x = 5, 11.3, 20, 25) prepared from metallic powder mixtures of magnesium and nickel by the process of HCS + MM, i.e., the hydriding combustion synthesis (HCS) followed by mechanical milling (MM). X-ray diffraction (XRD) and scanning electron microscopy (SEM) results demonstrated that mechanical milling led to drastic pulverization and grain refinement of the composite produced by HCS. All the composites with different compositions showed a remarkable decline in dehydriding temperature comparing with that of the hydride mixtures prepared only by HCS. Furthermore, the hydriding rates of these composites were excellent. At 313 K the composite Mg80Ni20 showed the highest hydrogen capacity of 2.77 wt.% within 600 s among these four composites. The Mg95Ni5 showed maximum capacity of 4.88 wt.% at 373 K and 5.41 wt.% at 473 K within only 100 s. Some factors contributing to the improvement in hydriding rates were discussed in this paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号