首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, the effects of filtration on quality parameters, chemical characteristics, antioxidant activity, and oxidative stability (OS) of Turkish olive oils during the storage period of 12 months were investigated. The olive oil free acidity (% oleic acid per 100 g of olive oil) (free fatty acidity, FFA), peroxide values (PV) (meq O2 kg−1 oil), and UV spectrophotometric indices (K232 and K270 measurements) were used for evaluating the quality parameters of olive oils. α-tocopherol analysis, total phenolic content (TPC), total chlorophyll and carotenoid analyses, and 2,2-diphenyl-1-picrylhydrazyl (DPPH•) radical-scavenging activity (RSA) assays were carried out. Chromatographic methods were applied to determine the fatty-acid and triacylglycerol (TAG) composition, the content of methyl and ethyl esters (FAEE and FAME), and the content of fatty acids of olive oils. Univariate and multivariate statistical methods were performed to evaluate results. Univariate data analysis results showed that filtration of Ayvalık, Memecik, and Domat olive oils had no considerable influence on quality parameters, antioxidant compounds, FAEE and FAME, antioxidant activity, and OS, except TPC (P < 0.05). A significant difference between the samples was determined regarding storage times of the olive oils. Principal component analysis (PCA) analysis revealed that olive oils were grouped according to storage periods of the olive oils regarding fatty-acid and triacylglycerol (TAG) composition while there was no clear separation among the samples according to the filtration process. However, qualitative and quantitative changes took place on minor and major components of olive oils during the storage period.  相似文献   

2.
The factors influencing the oxidative stability of different commercial olive oils were evaluated. Comparisons were made of (i) the oxidative stability of commercial olive oils with that of a refined, bleached, and deodorized (RBD) olive oil, and (ii) the antioxidant activity of a mixture of phenolic compounds extracted from virgin olive oil with that of pure compounds andα-tocopherol added to RBD olive oil. The progress of oxidation at 60°C was followed by measuring both the formation (peroxide value, PV) and the decomposition (hexanal and volatiles) of hydroperoxides. The trends in antioxidant activity were different according to whether PV or hexanal were measured. Although the virgin olive oils contained higher levels of phenolic compounds than did the refined and RBD oils, their oxidative stability was significantly decreased by their high initial PV. Phenolic compounds extracted from virgin olive oils increased the oxidative stability of RBD olive oil. On the basis of PV, the phenol extract had the best antioxidant activity at 50 ppm, as gallic acid equivalents, but on the basis of hexanal formation, better antioxidant activity was observed at 100 and 200 ppm.α-Tocopherol behaved as a prooxidant at high concentrations (>250 ppm) on the basis of PV, but was more effective than the other antioxidants in inhibiting hexanal formation in RBD olive oil.o-Diphenols (caffeic acid) and, to a lesser extent, substitutedo-diphenols (ferulic and vanillic acids), showed better antioxidant activity than monophenols (p- ando-coumaric), based on both PV and hexanal formation. This study emphasizes the need to measure at least two oxidation parameters to better evaluate antioxidants and the oxidative stability of olive oils. The antioxidant effectiveness of phenolic compounds in virgin olive oils can be significantly diminished in oils if their initial PV are too high.  相似文献   

3.
The fatty acid composition, peroxide value (PV), acid value (AV), iodine value (IV), total tocopherols (TT) content, and total phenolics (TP) content of canola oil (CAO), palm olein oil (POO), olive oil (OLO), corn oil (COO), and the binary and ternary blends of the CAO with the POO, OLO, and COO were determined. The blends were prepared in the volume ratios of 75:25 (CAO/POO, CAO/OLO, CAO/COO) and 75:15:10 (CAO/POO/OLO, CAO/POO/COO). The CAO and its blends were used to fry potato pieces (7.0 × 0.5 × 0.3 cm) at 180 °C. During the frying process, the total polar compounds (TPC) content, AV, oil/oxidative stability index (OSI), and color index (CI) of the CAO/blends were measured. In general, frying stability of the CAO was significantly (P < 0.05) improved by the blending, and the frying performance of the ternary blends was found to be better than that of the binary blends.  相似文献   

4.
Review of stability measurements for frying oils and fried food flavor   总被引:6,自引:0,他引:6  
Measurements of degradation in frying oils based on oil physical properties and volatile and nonvolatile decomposition products were reviewed. Rapid methods by means of test kits were also considered. Factors that affect the analysis of total polar components (TPC) in frying oils were examined. Relationships between TPC, free fatty acid (FFA) content, Food Oil Sensor readings (FOS), color change (ΔE), oil fry life and fried-food flavor were evaluated. Flavor scores for codfish, fried in fresh and discarded commercial frying oil blends, were dependent upon individuals in the consumer panel (n=77). Part (n=29) of the panel preferred the flavor of fresh fat; others (n=24) didn't; the rest (n=24) had no preference. FFA, FOS and TPC were analyzed in two soybean oils and in palm olein during a four-day period in which french fries were fried. Flavor score and volatiles of potatoes fried on days 1 and 4 in each oil were also determined. TPC, FFA and FOS significantly increased (P<0.05) in all oils during the frying period. TPC and FFA were highest in the used palm olein, and flavor of potatoes fried in palm olein on day 1 was less desirable than those fried in the soybean oils. Potatoes fried in day-1 oils had significantly higher concentrations (P<0.10) of several pyrazines and aldehydes than those fried in day-4 oils. Presented at the 84th Annual Meeting of the American Oil Chemists' Society, Anaheim, California, April 25–29, 1993.  相似文献   

5.
Deep fat frying is one of the most widely used cooking practices but heat treatment produces many degradation products, some of which may cause health hazards. A simple, rapid, and inexpensive method for assessment of the quality of cooking oil used for frying was developed using a spectrophotometer. Potato slices were heated in Agab oil (soybean/sunflower:1/l volume) at 180 ± 5 °C for 8 h per day for 6 consecutive days. Heated samples were collected at 15-min intervals and UV absorbance at λ = 370–400 nm was measured; samples were also analyzed for anisidine value (AV), conjugated diene formation (CD), and total polar compounds (TPC). A systematic increase of absorbance in heated oil over frying time was observed. TPC was highest (R 2 = 0.99) for the correlation with heating time followed by CD (0.93) and AV (0.89). The spectrophotometric method developed in the present study to assess the quality of heated oils is simple, quick, and reliable because its results were strongly correlated with the results from the TPC.  相似文献   

6.
Previous studies reported that several amino acids had strong antioxidant activity in vegetable oils under frying conditions. In this study, amino acids were converted to their sodium or potassium salts, and a heating study was conducted with 5.5 mM amino acid salts in soybean oil (SBO) at 180°C. Sodium salts of amino acids including alanine, phenylalanine, and proline and disodium glutamate had significantly stronger antioxidant activity than the corresponding amino acids, and potassium salts had stronger antioxidant activity than sodium salts. Potassium salts of alanine and phenylalanine more effectively retained tocopherols in SBO than the corresponding amino acids during heating. Phenylalanine potassium salt had stronger antioxidant activity than phenylalanine in other vegetable oils including olive, high oleic soybean, canola, avocado, and corn oils. Phenylalanine potassium salt at 5.5 mM more effectively prevented oil oxidation than tert-butyl hydroquinone, a synthetic antioxidant, at its legal concentration limit (0.02%) indicating its feasibility as a new antioxidant for frying.  相似文献   

7.
The effect of specific oil surface (SOS) during pan frying of rapeseed oil on its thermal stability and antioxidant capacity (AC) was evaluated. Rapeseed oils with different oil layer heights (OLH = 0.5, 1.0, 1.5, 2.0, and 2.5 cm) were heated on an electric frying pan coated with Teflon at 180 ± 10 °C until a selected end point of 25 % total polar compounds (TPC) was reached. The changes of chemical parameters of oil samples such as peroxide value, p‐anisidine value, Totox value, free fatty acids, TPC and AC using the 2,2‐diphenyl‐1‐picrylhydrazyl assay were determined. Irrespective of the applied methods, the highest changes in oil with OLH = 0.5 cm were observed. Heating in low OLH also led to the fastest time of TPC formation in rapeseed oil; the 0.5‐cm layer reached 25 % TPC in a relatively short time (71.5 min) compared to the highest OLH = 2.5 cm (t = 315.1 min). The SOS and the rate of change in the heated oils decreased with increasing OLH. Crucial effects of SOS on physicochemical oil changes were observed. The present study demonstrated the protective effect of increasing the OLH on the quality of the heated rapeseed oils.  相似文献   

8.
13C Nuclear magnetic resonance (NMR) spectra of 104 oil samples were obtained and analyzed in order to study the use of this technique for routine screening of virgin olive oils. The oils studied included the following: virgin olive oils from different cultivars and regions of Europe and north Africa, and refined olive, “lampante” olive, refined olive pomace, high-oleic sunflower, hazelnut, sunflower, corn, soybean, rapeseed, grapeseed, and peanut oils, as well as mixtures of virgin olive oils from different geographical origins and mixtures of 5–50% hazelnut oil in virgin olive oil. The analysis of the spectra allowed us to distinguish among virgin olive oils, oils with a high content of oleic acid, and oils with a high content of linoleic acid, by using stepwise discriminant analysis. This parametric method gave 97.1% correct validated classifications for the oils. In addition, it classified correctly all the hazelnut oil samples and the mixtures of hazelnut oil in virgin olive oil assayed. All of these results suggested that 13C NMR may be used satisfactorily for discriminating some specific groups of oils, but to obtain 100% correct classifications for the different oils and mixtures, more information than that obtained from the direct spectra of the oils is needed.  相似文献   

9.
Frying performance of low-linolenic acid soybean oil   总被引:3,自引:3,他引:0  
The frying performance of low-linolenic acid soybean oil from genetically modified soybeans was examined. Partially hydrogenated and unhydrogenated low-linolenic acid soybean oils were compared to two partially hydrogenated soybean frying oils. Frying experiments utilizing shoestring potatoes and fish nuggets were conducted. Frying oil performance was evaluated by measuring free fatty acid content, p-anisidine value, polar compound content, soap value, maximal foam height, polymeric material content, and Lovibond red color. The hydrogenated low-linolenic soybean oil (Hyd-LoLn) consistently had greater (P<0.05) free fatty acid content and lower p-anisidine values and polymeric material content than did the other oils. Hyd-LoLn generally was not significantly different from the traditional oils for polar content, maximal foam height, and Lovibond red color. The low-linolenic acid soybean oil (LoLn) tended to have lower soap values and Lovibond red color scores than did the other oils. LoLn had consistently higher (P<0.05) p-anisidine values and polymeric material content than did the other oils, and LoLn generally was not different (P<0.05) from the traditional oils for polar content, maximal foam height, and free fatty acid.  相似文献   

10.
Analysis of used frying oil samples by high performance liquid chromatography–size exclusion chromatography (HPLC–SEC or HPSEC) was compared to AOCS Official Method Cd 20-91 (silica gel column chromatography) for the purpose of developing a rapid analysis of total polar compounds (TPC). In a direct comparison of the two analytical methods using four different sets of used frying oils (21 total oil samples) ranging from fresh to discard quality (4.3 to 35.4% TPC by column chromatography), the weight percent total polar compounds (%TPC) determined by HPLC–SEC averaged 0.71% higher than the values by silica gel column chromatography. Reproducibility of the HPLC–SEC method of s r = 0.30 and RSDr% = 1.22 compares to the variability of s r = 0.29 and RSDr = 1.3 for samples of approximately the same %TPC, reported in AOCS Method Cd 20-91. Because the rapid method does not separate pure (non-polar) triacylglycerol (TAG) and polar, oxidized TAG (OX-TAG), a high concentration of OX-TAG will quantitatively affect the results. This places practical limits on the types of studies to which the method may be applied if a separate analysis for the OX-TAG is not performed. Advantages of the HPLC–SEC method include the following. It uses about 75% less solvent than standard column chromatography methods for determination of %TPC. This HPLC–SEC method is very similar to AOCS Official Method Cd 22-91, and thus, also separates and quantifies polymerized triacylglycerols. The HPLC–SEC method determines both TAG polymer concentration and %TPC of used frying oils in about 1 h.  相似文献   

11.
The oxidation of vegetable oils is generally treated as an apparent first order kinetic reaction. This study investigated the deterioration of crude palm oil (CPO), refined canola oil (RCO) and their blend (CPO:RCO 1:1 w/w) during 20 h of successive deep‐fat frying at 170, 180 and 190 °C. Kinetics of changes in oil quality indices, namely, free fatty acid (FFA), peroxide value (PV), anisidine value (p‐AV), total polar compounds (TPC) and color index (CI) were monitored. The results showed that FFA and PV accumulation followed the kinetic first order model, while p‐AV, TPC and CI followed the kinetic zero order model. The concentration and deterioration rate constants k, increased with increasing temperatures. This effect of temperature was modeled by the Arrhenius equation. The results showed that PV had the least activation energies Ea (kJ/mol) values of 5.4 ± 1 (RCO), 6.6 ± 0.7 (CPO) and 11.4 ± 1 (blend). The highest Ea requirement was exhibited by FFA with a range of 31.7 ± 3–76.5 ± 7 kJ/mol for the three oils. The overall Ea values showed that the stability of the blend was superior and not just intermediate of CPO and RCO. The correlation of the other oil quality indices with TPC indicated a positive linear correlation. The p‐AV displayed the strongest correlation, with mean correlation coefficient rs of 0.998 ± 0.00, 0.994 ± 0.00 and 0.999 ± 0.00 for CPO, RCO and blend, respectively.  相似文献   

12.
The specific heat capacity (cp) of frying oils is of practical importance in engineering work associated with refining operations and the thermal resistance during application. The objective of this study was to use modulated differential scanning calorimetry (MDSC) to measure the specific heat capacity of frying oil. Samples were exposed to a cyclic heating profile that was generated by a linear heating rate while simultaneously superimposing a sinusoidally varying time–temperature wave. The cp variation of three commercial frying oils during frying was tested over a temperature range between 0 and 250 °C, and the correlation of cp with triacylglycerol (TAG) polymer contents, total polar compounds (TPC), and polar fractions was studied. Results indicated that the specific heat capacity of frying oils increased linearly as temperature increased. During frying, cp had a positive relation with TAG polymers and TPC at the beginning, but finally decreased when frying ended. This was possibly associated with the variation of polar fractions as frying continued. The large molecular compounds and small molecular compounds of polar fractions were considered to contribute oppositely to cp, which led to its final decrease.  相似文献   

13.
The phenolic composition and antioxidant activity of several monovarietal extra virgin olive oils used as blenders for the production of Collina di Brindisi protected designation of origin (PDO) oil, produced between December 2008 and January 2009 using two‐phases or three‐phases extraction system, were evaluated and compared with other manufacturer products designated as PDO. Oils were taken from the most representative ones industrial oil mills in the PDO geographical area. The parameters assessed were free acidity, peroxide value, K232 and K270 indices, organoleptic characteristics, total phenolic content (TPC), phenolic profile, and antioxidant activity coefficient (AAC). The phenolic contents and profiles of the monovarietal oils showed remarkable differences with respect to PDO oils. The variables that exerted a major influence on phenols concentration were the maturity degree of olives (December>January), followed by the extraction system (two‐phase>three‐phase), and place of growing. The Pearson r correlation index showed that AAC was positively correlated with TPC, p‐coumarate, and 3,4‐DHPEA‐EA, and negatively correlated with peroxide value. Practical applications: The results provide detailed information about: (i) the phenolic composition and the AAC of several monovarietal extra virgin olive oils used as blenders for the production of a PDO oil; (ii) the impact of genetic variability, place of growing, olive maturity degree, and extraction technology on oil phenol compounds; and (iii) the relationships among each phenolic compound and AAC, and their potential utilization as analytical index of antioxidant activity. It is important to study the phenolic compounds and antioxidant activity of monovarietal extra virgin olive oils used to produce PDO oil and to compare with the relative PDO samples in order to define a possible analytical tool able to verify what is stated in the label for consumer information and protection.  相似文献   

14.
Oleaginous yeast cells have the ability to synthesize oil from carbon sources or to adsorb fatty acids from their growth medium. Fish oil or conjugated linoleic acid (CLA)-rich oils encapsulated in Cryptococcus curvatus were protected from oxidation for more than 7 weeks. Oil-containing dead and viable yeast as well as oils extracted from dead or viable yeast were incubated at 52 °C in the dark. Oils extracted from yeast at the beginning of the experiment began oxidizing almost immediately and exceeded peroxide values (PV) of 20 mequiv/kg within a few days and eventually reaching PV > 100 mequiv/kg. After 56 days of incubation the PV value of oil from viable cells grown on fish oil was 3.8 ± 0.1 and 5.5 ± 0.8 mequiv/kg from dead cells. After 42 days of incubation the PV of oil from viable CLA containing yeast was 1.1 ± 0.2 mequiv/kg and 1.7 ± 0.5 from dead CLA containing yeast. C. curvatus encapsulation significantly improved oxidative stability of long-chain polyunsaturated fatty acids (LCPUFA) and CLA. Yeast cell viability was not critical for oxidative stability of the encapsulated oil.  相似文献   

15.
Frying quality and oxidative stability of high-oleic corn oils   总被引:1,自引:3,他引:1  
To determine the frying stability of corn oils that are genetically modified to contain 65% oleic acid, high-oleic corn oil was evaluated in room odor tests and by total polar compound analysis. Flavor characteristics of french-fried potatoes, prepared in the oil, were also evaluated by trained analytical sensory panelists. In comparison to normal corn oil, hydrogenated corn oil and high-oleic (80 and 90%) sunflower oils, high-oleic corn oil had significantly (P<0.05) lower total polar compound levels after 20 h of oil heating and frying at 190°C than the other oils. Fried-food flavor intensity was significantly higher in the normal corn oil during the early portion of the frying schedule than in any of the high-oleic or hydrogenated oils; however, after 17.5 h of frying, the potatoes fried in normal corn oil had the lowest intensity of fried-food flavor. Corn oil also had the highest intensities of off-odors, including acrid and burnt, in room odor tests. High-oleic corn oil also was evaluated as a salad oil for flavor characteristics and oxidative stability. Results showed that dry-milled high-oleic corn oil had good initial flavor quality and was significantly (P<0.05) more stable than dry-milled normal corn oil after oven storage tests at 60°C, as evaluated by flavor scores and peroxide values. Although the high-oleic corn oil had significantly (P<0.05) better flavor and oxidative stability than corn oil after aging at 60°C, even more pronounced effects were found in high-temperature frying tests, suggesting the advantages of high-oleic corn oil compared to normal or hydrogenated corn oils.  相似文献   

16.
The antioxidant activities of the raisin extract (RE) in stripped corn oil, stripped corn oil emulsions, and sunflower butter stored at 60 °C for up to 15 days was evaluated. Peroxide values and hexanal content were measured on a half day, 2 or 3 day basis for the emulsion, sunflower butter, and bulk oil, respectively. The RE had the best antioxidant activity in the bulk oil system. Statistical contrasts indicated the oxidation of bulk corn oil treated with RE was significantly (p < 0.001 and p = 0.044) lower than bulk oil and bulk oil treated with tertiary-butylhydroquinone (TBHQ), respectively. No differences (p = 0.15) in hexanal concentrations were observed in stored bulk oils treated with RE and TBHQ. However, both these materials inhibited hexanal formation better (p < 0.001) when compared to the control corn oil. In contrast, 200 μg/g TBHQ had better (p = 0.0004) antioxidant activity than 3,000 μg/g RE in the oil in water(o/w) emulsion. No significant differences (p = 0.1637) in hexanal formation were observed in the emulsions treated with RE and TBHQ. However, the data indicated that the RE treated emulsion did undergo more secondary oxidation than the emulsion treated with TBHQ beyond 110 h. The 3,000 μg/g RE had antioxidant activity in sunflower butter, but was less effective than the 200 μg/g TBHQ and a lower RE concentration (200 μg/g). The observations supported the hypothesis that RE has antioxidant activity in the multiple model systems.  相似文献   

17.
Response surface methodology (RSM) was used to evaluate the quantitative effects of two independent variables, rapeseed moisture content and conditioning temperature, on the antioxidant capacity (AC) and total phenolic (TPC), tocopherol (TTC), and phosphorus contents (PC) in the pressed rapeseed oils. The mean AC results for the crude rapeseed oils ranged from 199.8 to 947.2 μmolTE/100 g. TPC and PC in the crude rapeseed oils correlated significantly (P < 0.01) and positively with AC of oils (R 2 = 0.9498 and 0.4396, respectively). The experimental results of AC, TPC, and PC were close to the predicted values calculated from the polynomial response surface model equations (R 2 = 0.9801, 0.9747 and 0.9165, respectively). The effect of oil processing temperature on AC and TPC was about 1.5 times greater than the effect of moisture level in rapeseed.  相似文献   

18.
To evaluate the effects of repeated deep‐frying on the trans‐fatty acid (TFA) formation in soybean oils, simultaneous frying experiments were carried out. French fries were prepared using three different types of soybean oil (pressed soybean oil, PSBO; first‐grade solvent extracted soybean oil, FG‐SESBO; and third‐grade solvent extracted soybean oil, TG‐SESBO). French fries were fried intermittently at 180–185°C for a total frying time of 32 h and at an interval time of 30 min. It was found that the initial amount of total TFAs was 0.29 g/100 g, 0.31 g/100 g, and 0.90 g/100 g in PSBO, TG‐SESBO, and FG‐SESBO, respectively. Before the frying started, the C18:1,t‐9, trans‐linoleic acid (TLA), trans‐linolenic acid (TLNA), and total TFA content of the PSBO and TG‐SESBO were significantly lower than in the FG‐SESBO (p<0.05). However, in the frying oil samples, the final concentration of total TFA in the PSBO, TG‐SESBO, and FG‐SESBO were 1.79 ± 0.17 g/100 g, 1.12 ± 0.10 g/100 g, and 1.70 ± 0.07 g/100 g, which was 6.17‐, 3.61‐, and 1.89‐fold higher that in fresh oil, respectively. The highest increasing slopes of C18:1,t‐9, TLA, TLNA, and total TFA were observed in the PSBO. Practical applications : A high intake of TFAs has been shown to lead to an increased risk of coronary heart disease. Plant oils, particularly soybean oil, have been widely used in the food industry in China. Frying is one of the most common methods to cook food. The formation of TFAs during frying has been shown to be closely related to the temperature and duration of the frying process. However, the effects of frying on the formation of TFAs in different soybean oils have not been well studied. In the present study, we demonstrated that increasing the number of frying cycles can cause an intensive increase in the concentration of TFAs in different types of soybean oil, but especially in PSBO.  相似文献   

19.
Pilot plant-processed samples of soybean and canola (lowerucic acid rapeseed) oil with fatty acid compositions modified by mutation breeding and/or hydrogenation were evaluated for frying stability. Linolenic acid contents were 6.2% for standard soybean oil, 3.7% for low-linolenic soybean oil and 0.4% for the hydrogenated low-linolenic soybean oil. The linolenic acid contents were 10.1% for standard canola oil, 1.7% for canola modified by breeding and 0.8% and 0.6% for oils modified by breeding and hydrogenation. All modified oils had significantly (P<0.05) less room odor intensity after initial heating tests at 190°C than the standard oils, as judged by a sensory panel. Panelists also judged standard oils to have significantly higher intensities for fishy, burnt, rubbery, smoky and acrid odors than the modified oils. Free fatty acids, polar compounds and foam heights during frying were significantly (P<0.05) less in the low-linolenic soy and canola oils than the corresponding unmodified oils after 5 h of frying. The flavor quality of french-fried potatoes was significantly (P<0.05) better for potatoes fried in modified oils than those fried in standard oils. The potatoes fried in standard canola oil were described by the sensory panel as fishy.  相似文献   

20.
Three hundred (experiment I) and 350 (experiment II) weanling, 3-week-old male Sprague-Dawley rats weighing between 40–50 g were randomly assigned two per cage and 50 per dietary treatment to study the effect of dietary fatty acid balance on myocardial lesions. The following oils were tested: Experiment I.Brassica napus var. Tower rapeseed oil [Tower RSO, 1974 cultivar and 1975 cultivar, each containing 0.3% erucic (22∶1) acid];B. napus var. Zephyr RSO containing 0.9% 22∶1; corn oil; olive oil; and soybean oil. Experiment II.B. napus var. Tower RSO (1974 cultivar), olive oil, soybean oil, and the following oils to which was added the indicated level of free 22∶1; Tower +0.5% 22∶1; Tower +5.6% 22∶1; olive oil +4.4% 22∶1; soybean oil +5.7% 22∶1. In each case the oils were incorporated in a semisynthetic diet at a level of 20% by weight. Heart and heart lipid weights of rats fed the different oils did not differ statistically from each other. Fatty acid analyses of heart lipids revealed that the fatty acid composition of the cardiac lipids reflected that of the diet fed. In experiment I, there was a definite but significantly lower incidence (P<0.01) and severity (P<0.01) of heart lesions in rats fed control oils (corn, olive, soybean) than in rats fed rapeseed oils. Also, in experiment II, a definite but lower incidence and severity of heart lesions occurred in rats fed control oils (soybean, olive) compared to rats fed Tower RSO or this oil with added free 22∶1. Adding 22∶1 to an oil naturally high in 18∶3 (soybean) did not alter the incidence of heart lesions, whereas adding 22∶1 to an oil naturally high in 18∶1 (olive) increased significantly (P<0.01) both the incidence and severity of heart lesions. Thus, it appears that the background incidence of heart lesions that are found in the rat in any case, and which are increased by rapeseed oil feeding, is caused by the imbalanced fatty acid composition of the oil for the growing rat, i.e. high monoenes (18∶1, 20∶1, and 22∶1) and high 18∶3 and is not only due to the presence of excess 18∶3. Contribution No. 706, Animal Research Institute.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号