首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The seed oil of Microula sikkimensis had been intensively studied due to its pharmacological actions. In the present study, seed oil of Microula sikkimensis was extracted using supercritical fluid extraction (SFE). Determinations of the extracts composition were performed by gas chromatography (GC). An orthogonal array design (OAD), OA9 (34), was employed for optimization of the supercritical fluid extraction of the compound with regard to the various parameters. Four factors, namely pressure (21.0–27.0 MPa), the dynamic extraction time, temperature, and CO2 flow rate of the supercritical fluid, were studied and optimized by a three-level OAD. The effects of the parameters on the yield of seed oil were studied using analysis of variance (ANOVA). The results revealed that the pressure had a significant effect on the yield of seed oil (p < 0.05), while the other three factors, i.e., CO2 flow rate, dynamic extraction time and temperature, were not identified as significant factors under the selected conditions based on ANOVA. The results show that the best values for the extraction condition of seed oil was pressure 24.0 MPa, extraction time 3 h, temperature 45 °C and a CO2 flow rate 20 L/h in the 20-L vessel.  相似文献   

2.
The physicochemical properties of crude Nigella seed (Nigella sativa L.) oil which was extracted using Soxhlet, Modified Bligh–Dyer and Hexane extraction methods were determined. The effect of different extraction methods which includes different parameters, such as temperature, time and solvent on the extraction yield and the physicochemical properties were investigated. The experimental results showed that temperature, different solvents and extraction time had the most significant effect on the yield of the Nigella oil extracts. The fatty acid (FA) compositions of Nigella seed oil were further analyzed by gas chromatography to compare the extraction methods. The C16:0, C18:1 and C18:2 have been identified to be the dominant fatty acids in the Nigella seed oils. However, the main triacylglycerol (TAG) was LLL followed by OLL and PLL. The FA and TAG content showed that the composition of the Nigella seed oil extracted by different methods was mostly similar, whereas relative concentration of the identified compounds were apparently different according to the extraction methods. The melting and crystallization temperatures of the oil extracted by Soxhlet were −2.54 and −55.76 °C, respectively. The general characteristics of the Nigella seed oil obtained by different extraction methods were further compared. Where the Soxhlet extraction method was considered to be the optimum process for extracting Nigella seed oil with a higher quality with respect to the other two processes.  相似文献   

3.
The composition and content of lipids, fatty acids, triacylglycerols, tocopherols and sterols in nine fenugreek genotypes were analyzed. Lipid content in fenugreek seeds ranged from 5.8 to 15.2%. Major fatty acids were: linoleic acid (45.1–47.5%), α-linolenic (18.3–22.8%), oleic (12.4–17.0%), palmitic (9.8–11.2%) and stearic (3.8–4.2%) acids. The ratios of n-6 to n-3 fatty acids were between 2.1 and 2.7. Similar fatty acid distribution was observed in all analyzed samples with some deviations. α-Tocopherol was the predominant component found in the fenugreek lipid antioxidants, and it constituted over 84% of the total amounts of tocopherols. It amounts ranged from 620 to 910 mg/kg lipids. β-Sitosterol was the major sterol in all samples, varying from 14,203 to 18,833 mg/kg of lipids. Campesterol and cycloartenol were other major sterols, and these compounds including β-sitosterol constituted 56–72% of all sterols. Fenugreek seed lipids consisted predominantly triunsaturated (56.9–66.5%) and diunsaturated (32.2–41.6%) triacylglycerides. Among these components trilinolein (LLL; 12.9–20.5%) dominated followed by PLL (14.0–20.4%), LnLnO (7.8–17.7%), PLO (5.7–11.6%), OLL (6.9–10.6%), LLLn (3.2–9.6%), and LnLnL (3.5–7.6%). Results of the study show that fenugreek seed lipids may be a source of a nutraceutical ingredient for food applications.  相似文献   

4.
The sandalwood kernels of Santalum insulare (Santalaceae) collected in French Polynesia give seed oils containing significant amounts of ximenynic acid, E-11-octadecen-9-oic acid (64–86%). Fatty acid (FA) identifications were performed by gas chromatography/mass spectrometry (GC/MS) of FA methyl esters. Among the other main eight identified fatty acids, oleic acid was found at a 7–28% level. The content in stearolic acid, octadec-9-ynoic acid, was low (0.7–3.0%). An inverse relationship was demonstrated between ximenynic acid and oleic acid using 20 seed oils. Results obtained have been compared to other previously published data on species belonging to the Santalum genus, using multivariate statistical analysis. The relative FA S. insulare composition, rich in ximenynic acid is in the same order of those given for S. album or S. obtusifolium. The other compared species (S. acuminatum, S. lanceolatum, S. spicatum and S. murrayanum) are richer in oleic acid (40–59%) with some little differences in linolenic content.  相似文献   

5.
Zizyphi spinosi semen (ZSS) has been widely used for treatment of insomnia in oriental countries. The aim of this study is to characterize the fatty oil of ZSS obtained by supercritical fluid extraction in terms of chemical composition and physicochemical properties. The chemical composition, including fatty acids and unsaponifiable constituents, was analyzed by gas chromatography–mass spectrometer (GC–MS). The results revealed that 9-octadecenoic acid (43.38 ± 0.03%) and 9,12-octadecadienoic acid (40.58 ± 0.03%) were the main fatty acids, and β-sitosterol (37.39 ± 0.02%) and squalene (30.79 ± 0.01%) were the key unsaponifiables. Furthermore, four indexes were assayed according to Chinese Pharmacopeia (2005) to reflect the physicochemical properties of ZSS oil, their values being determined as follows: acid value (10.3 ± 0.1 mg KOH/g), peroxide value (0.05 ± 0.01 g/100 g), saponification value (194.4 ± 0.5 mg KOH/g) and iodine value (109.7 ± 0.8 g I/100 g). The basic information obtained provides data support for quality evaluation and efficacy research of ZSS oil, and suggests its prospects for development in pharmaceutical and food industries.  相似文献   

6.
Jatropha curcus L. oil has emerged as one of the most important raw materials for biodiesel production. However, no detailed study has been reported on characterizing the lipid constituents of jatropha oil. The present study revealed that the total oil content of jatropha seeds was 32% with a composition of 97.6% neutral lipids, 0.95% glycolipids and 1.45% phospholipids. The fatty acid composition of total lipids, neutral lipids, phospholipids and glycolipids was also determined and found to contain oleic acid (18:1) and linoleic acids (18:2) as major fatty acids. The phospholipids fraction was further characterized and quantified and found to contain phosphatidyl choline (PC) 60.5%, phosphatidyl inositol (PI) 24% and phosphatidyl ethanolamine (PE) 15.5%. The fatty acid composition and the positional distribution of the fatty acids of individual phospholipids were also reported.  相似文献   

7.
The fatty acid composition of the seed oil of 19 wild legume species from southern Spain was analyzed by gas chromatography. The main seed oil fatty acids ranged from C14:0 to C20:0. Among unsaturated fatty acids, the most abundant were linoleic, oleic and linolenic acids, except for Lathyrus angulatus, L. aphaca, L. clymenum, L. sphaericus and L. nigricans where C18:3 contents were higher than C18:1 contents. Palmitic acid was the most abundant saturated acid in studied species, ranging from 11.6% in Lathyrus sativus to 19.3% in Lens nigricans. All studied species showed higher amounts of total unsaturated fatty acids than saturated ones. Among studied species, the ω6/ω3 ratio was variable, ranging from 2.0% in L. nigricans to 13.8% in L. sativus, there being eight species in which the ω6/ω3 ratio was below 5. The fatty acids observed in these plants supports the use of these plants as a source of important dietary lipids.  相似文献   

8.
Supercritical CO2 fluid extraction (SFE-CO2) of Zanthoxylum bungeanum (Z. bungeanum) seed oil was investigated. To optimize the SFE process, three-level Box-Behnken factorial design and response surface methodology (RSM) were applied to optimize the extraction conditions, including pressure, temperature and amount of modifier. The optimum conditions were as follows: extraction pressure, 29.28 MPa; extraction temperature, 41.19 °C; and the added amount of modifier, 10.94%. The experimental results showed that the maximum extraction yield was 21.85 ± 0.23% (n = 3) under the proposed conditions. The compositional analysis of Z. bungeanum seed oil was performed by HPLC-FLD-MS using a new labeling reagent of 2-(11H-benzo[a]carbazol-11-yl)-ethyl-4-methyl benzenesulfonate (BCETS). The results indicated that the Z. bungeanum seed oil contained mainly unsaturated fatty acids, including C18:3, C22:6, C20:4, C18:2, C18:1 and C20:1, which accounted for 84.0% (mass percentage) of the total amount. The antioxidant activity of seed oil obtained by Box-Behnken design concerning the DPPH radical was investigated, and this indicated that the pressure and the amount of added modifier had positive effects on the antioxidant activity, but the effect of the temperature elevation is complicated, depending on the nature of the extracted contents.  相似文献   

9.
Acer truncatum seed oil rich in nervonic acid was extracted using supercritical carbon dioxide. GC (Gas Chromatography) analysis revealed that the oil contained approximately 6.22% nervonic acid. The sn‐2 compositions were also determined using lipase hydrolysis. A total of 52 triacylglycerides (TAG) were tentatively identified in the oil using an ultra‐performance convergence chromatography (UPC2) coupled with quadrupole time‐of‐flight mass spectrometry (Q‐TOF‐MS) for the first time. In addition, the contents of phytosterols (1961.9–2402.8 μmol/kg) and β‐carotene (2.09–2.35 μmol/kg) were also quantified for the first time, along with tocopherols (2352.0–2654.3 μmol/kg). The γ‐tocopherol (1296.9‐1442.3 μmol/kg) was the primary tocopherol, while β‐sitosterol (1355.2–1631.3 μmol/kg) was the dominant phytosterol. The physicochemical properties of the oil were also investigated. This study indicated that A. truncatum seed oil is rich in nervonic acid and other nutraceutical constituents. It has a high potential in functional foods for improving human health.  相似文献   

10.
Atractylodes rhizome is widely used in traditional Chinese herbal medicine. Although the chemical composition of the root has been studied in detail, the oil content and fatty acid composition of the seeds of Atractylodes species have not been reported. Fatty acyl composition of seeds from Atractylodes lancea and A. macrocephala was determined by gas chromatography and mass spectrometry of fatty acid methyl esters and 3-pyridylcarbinol esters. The predominant fatty acid in the seeds of both species was linolenic acid, but the unusual acetylenic fatty acid, crepenynic acid (cis-9-octadecen-12-ynoic acid), was also observed at levels of 18% in A. lancea and 13–15% in A. macrocephala. Fatty acid content was 24% for the samples of A. lancea and 16–17% for samples from A. macrocephala. sn-1,3 regioselective lipase digestion of seed lipids revealed that crepenynic acid was absent from the sn-2 position of the seed triacylglycerol. Crepenynic acid was also found in the seed oil of Jurinea mollis at 24% and was not present in the sn-2 position of the TAG. A contrasting distribution of crepenynic acid was found in the oil of Crepis rubra, suggesting differences in crepenynic acid synthesis or TAG assembly between these species.  相似文献   

11.
Avato P  Pesante MA  Fanizzi FP  Santos CA 《Lipids》2003,38(7):773-780
The chemical composition of the oil extracted from the seeds of Paullinia cupana var. sorbilis (Mart.) Ducke (syn. P. sorbilis) was investigated. Cyanolipids constituted 3% of the total oil from guaraná seeds, whereas acylglycerols accounted for 28%. 1H and 13C NMR analyses indicated that type 1 cyanolipids (1-cyano-2-hydroxymethylprop-2-ene-1-ol diesters) are present in the oil from P. cupana. GC and GC-MS analysis showed that cis-11-octadecenoic (cis-vaccenic acid) and cis-11-eicosenoic acids were the main FA (30.4 and 38.7%) esterified to the nitrile group. Paullinic acid (7.0%) was also an abundant component. Oleic acid (37.4%) was the dominant fatty acyl chain in the acylglycerols.  相似文献   

12.
Supercritical fluid extraction (SFE) of sorghum bug oil (SBO) with carbon dioxide was performed and compared with Soxhlet extraction using hexane. Response surface methodology (RSM) was used to determine the effects of pressure (200–400 bar) and temperature (50–70 °C) on the sorghum bug oil yield in SC-CO2. The high extraction yield (more than 45.0%) was obtained at 300 bar and 60 °C followed by 400 bar and 70 °C, while the lower yield was obtained at 159 bar and 60 °C. At low pressure levels (159 and 200 bar), the oil yield decreased due to the reduced density of CO2 at higher temperatures. Gas chromatography was used to characterize the fatty acids of the oils obtained while α-tocopherol was quantified by HPLC. No differences were found in the fatty acid compositions of the various extracts, while the α-tocopherol extracted from sorghum bug oil by the conventional solvent method was less than that extracted by the SFE process using CO2. It can be observed that the conventional solvent extraction method exhibited notable DPPH radical-scavenging activity, with an efficacy slightly lower (IC50 7.45 ± 0.3) than that of the SFE extracts.  相似文献   

13.
Derivatives of 2,2-dimethyl-3-(2-methylprop-1-enyl)cyclopropanecarboxylic acid (chrysanthemic acid) are classic natural pyrethroids discovered in pyrethrum plants and show insecticidal activity. Chrysanthemic acid, with two asymmetric carbons, has four possible stereoisomers, and most natural pyrethroids have the (1R,3R)-trans configuration. Interestingly, chrysanthemic acid–related structures are also found in insect sex pheromones; carboxylic esters of (1R,3R)-trans-(2,2-dimethyl-3-(2-methylprop-1-enyl)cyclopropyl)methanol (chrysanthemyl alcohol) have been reported from two mealybug species. In the present study, another ester of chrysanthemyl alcohol was discovered from the striped mealybug, Ferrisia virgata (Cockerell), as its pheromone. By means of gas chromatography–mass spectrometry, nuclear magnetic resonance spectrometry, and high-performance liquid chromatography analyses using a chiral stationary phase column and authentic standards, the pheromone was identified as (1S,3R)-(?)-cis-chrysanthemyl tiglate. The (1S,3R)-enantiomer strongly attracted adult males in a greenhouse trapping bioassay, whereas the other enantiomers showed only weak activity. The cis configuration of the chrysanthemic acid–related structure appears to be relatively scarce in nature, and this is the first example reported from arthropods.  相似文献   

14.
Few studies report the individual effect of 9c,11t- and 10t,12c-CLA on human energy metabolism. We compared the postprandial oxidative metabolism of 9c,11t- and 10t,12c-CLA and oleic acid (9c-18:1) in 22 healthy moderately overweight volunteers. After 24 weeks supplementation with 9c,11t-, 10t,12c-CLA or 9c-18:1 (3 g/day), subjects consumed a single oral bolus of the appropriate [1-13C]-labeled fatty acid. 8 h post-dose, cumulative oxidation was similar for 9c-18:1 and 10t,12c (P = 0.66), but significantly higher for 9c,11t (P < 0.01).  相似文献   

15.
Experimental data illustrate the diversity of ash composition in Russian coal, even within a single rank. Examples show that the ash basicity may be used for effective optimization of the coking-batch composition by basin, rank, and components, in improving the CRI and CSR values of coke.  相似文献   

16.
Nitroso compounds were electrogenerated from (1S, 2S)-2-amino-1-(4-nitrophenyl)-propane-1,3-diol derivatives (derivatives of p-nitrophenylserinol) in a “redox” flow cell equipped with two consecutive porous electrodes of opposite polarities. In spite. of the relative instability in methanol-acetate buffer of the hydroxylamine intermediates produced at the first porous electrode (cathode), the nitroso derivatives were prepared in good yields at the second one (anode). A coupling reaction between some nitroso derivatives and p-toluenesulphinic acid led to N-sulphonylphenylhydroxylamines.  相似文献   

17.
The sex pheromone of Phyllophaga (Phytalus) georgiana was characterized as valine methyl ester, tentatively the l-enantiomer. This is the first sex pheromone identified from the Phyllophaga subgenus Phytalus. The pheromone was extracted from female glands, the active component isolated by coupled gas chromatography–electroantennogram detection analysis, characterized by mass spectrometry, and shown to be active in field tests. The seasonal flight pattern was determined for P. georgiana as well as for three other species, P. anxia (both northern and southern genitalic forms), P. gracilis, and P. postrema. The latter three species were captured in traps baited with l-isoleucine methyl ester. Sridhar Polavarapu, deceased May 7, 2004. We dedicate this publication to our friend and colleague.  相似文献   

18.
Annona squamosa and Catunaregam nilotica seeds and oils were characterized for their approximate analysis and physico-chemical properties. The oil and protein contents were 26.8, 17.5 and 40.0, 22.2%, in A. squamosa and C. nilotica seeds, respectively. The oils were extracted using cold extraction (CE) and Soxhlet extraction (SE) methods. Fatty acids and tocopherols were determined by GC–MS and HPLC, respectively. Generally the physico-chemical properties and fatty acids were not significantly (P ≤ 0.05) affected by the extraction methods. The major fatty acids of A. squamosa oil extracted by CE and SE were oleic 49.2 and 50.5%, linoleic 22.3 and 22.7%, palmitic 15.6 and 15.2%, and stearic 10.6 and 9.3%, respectively. While the major fatty acids in C. nilotica oil extracted by CE and SE were oleic 10.5, and 10.4%, linoleic 63.1 and 63.4%, palmitic 9.7 and 9.8% and stearic 5.1 and 5.4%, respectively. The tocopherol content of CE and SE extracted oils from A. squamosa amounted to 16.6 and 15.5 and from C. nilotica amounted to 110.5 and 107.7 mg/100 g oil, respectively, with delta-tocopherol as the predominant tocopherol in A. squamosa oil, and beta-tocopherol in C. nilotica oil. The total amount of amino acids was found to be 7.266 and 14.202 g/100 g protein, in seeds of A. squamosa and C. nilotica, respectively.  相似文献   

19.
The hydrocarbons (3Z,6Z,9Z)-3,6,9-octadecatriene (3Z,6Z,9Z-18:H) and (3Z,6Z,9Z)-3,6,9-nonadecatriene (3Z,6Z,9Z-19:H) constitute the pheromone of the winter moth, Erannis bajaria. These compounds belong to a large group of lepidopteran pheromones which consist of unsaturated hydrocarbons and their corresponding oxygenated derivatives. The biosynthesis of such hydrocarbons with an odd number of carbons in the chain is well understood. In contrast, knowledge about the biosynthesis of even numbered derivatives is lacking. We investigated the biosynthesis of 3Z,6Z,9Z-18:H by applying deuterium-labeled precursors to females of E. bajaria followed by gas chromatography–mass spectrometry analysis of extracts of the pheromone gland. A mixture of deuterium-labeled [17,17,18,18-2H4]-3Z,6Z,9Z-18:H and the unlabeled 3Z,6Z,9Z-18:H was obtained after topical application and injection of (10Z,13Z,16Z)-[2,2,3,3-2H4]-10,13,16-nonadecatrienoic acid ([2,2,3,3-2H4]-10Z,13Z,16Z-19:acid) or (11Z,14Z,17Z)-[3,3,4,4-2H4]-11,14,17-icosatrienoic acid ([3,3,4,4-2H4]-11Z,14Z,17Z-20:acid). These results are consistent with a biosynthetic pathway that starts with α-linolenic acid (9Z,12Z,15Z-18:acid). Chain elongation leads to 11Z,14Z,17Z-20:acid, which is shortened by α-oxidation as the key step to yield 10Z,13Z,16Z-19:acid. This acid can be finally reduced to an aldehyde and decarbonylated or decarboxylated to furnish the pheromone component 3Z,6Z,9Z-18:H. A similar transformation of 11Z,14Z,17Z-20:acid yields the second pheromone component, 3Z,6Z,9Z-19:H.  相似文献   

20.
Locoweeds (Astragalus and Oxytropis spp. that contain the toxic alkaloid swainsonine) cause widespread poisoning of livestock on western rangelands. There are 354 species of Astragalus and 22 species of Oxytropis in the US and Canada. Recently, a fungal endophyte, Embellisia spp., was isolated from Astragalus and Oxytropis spp. and shown to produce swainsonine. We conducted a survey of the major locoweeds from areas where locoweed poisoning has occurred to verify the presence of the endophyte and to relate endophyte infection with swainsonine concentrations. Species found to contain the fungal endophyte and produce substantial amounts of swainsonine were A. wootoni, A. pubentissimus, A. mollissimus, A. lentiginosus, and O. sericea. Astragalus species generally had higher concentrations of swainsonine than Oxytropis. Swainsonine was not detected in A. alpinus, A. cibarius, A. coltonii, A. filipes, or O. campestris. The endophyte could not be cultured from A. mollissimus var. thompsonii or A. amphioxys, but was detected by polymerase chain reaction, and only 30% of these samples contained trace levels of swainsonine. Further research is necessary to determine if the endophyte is able to colonize these and other species of Astragalus and Oxytropis and determine environmental influences on its growth and synthesis of swainsonine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号