首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
A new method was developed to determine the gossypol content in cottonseed oil using FTIR spectroscopy with a NaCl transmission cell. The wavelengths used were selected by spiking clean cottonseed oil to gossypol concentrations of 0–5% and noting the regions of maximal absorbance. Transmittance values from the wavelength regions 3600–2520 and 1900–800 cm−1 and a partial least squares (PLS) method were used to derive FTIR spectroscopic calibration models for crude cottonseed, semirefined cottonseed, and gossypol-spiked cottonseed oils. The coefficients of determination (R 2) for the models were computed by comparing the results from the FTIR spectroscopy against those obtained by AOCS method Ba 8-78. The R 2 were 0.9511, 0.9116, and 0.9363 for crude cottonseed, semirefined cottonseed, and gossypol-spiked cottonseed oils, respectively. The SE of calibration were 0.042, 0.009, and 0.060, respectively. The calibration models were cross-validated within the same set of oil samples. The SD of the difference for repeatability and accuracy of the FTIR method were better than those for the chemical method. With its speed (ca. 2 min) and ease of data manipulation, FTIR spectroscopy is a useful alternative to standard wet chemical methods for rapid and routine determination of gossypol in process and/or quality control for cottonseed oil.  相似文献   

2.
A rapid method for the quantitative determination of the hydroxyl value (OHV) of hydroxylated soybean oils by HATR/FTIR spectroscopy is described. Calibration standards were prepared by the formic acid/hydrogen peroxide method and OH values were determined by the official method of AOCS Tx 1a-66, covering an analytical range of 3.5–125 mg of KOH/g of sample. A partial least squares (PLS) calibration model for the prediction of the hydroxyl value (OHV) was developed based on eight different spectral subregions between 3,150 and 990 cm−1 and combinations of them. On average, 36 samples were used for the modeling and 17 were used for external validation. The resulting calibration was linear over the analytical range and had a standard deviation of 2.334. Validation of the method was carried out by comparing the OHV of a series of hydroxylated soybean oils predicted by the PLS model to the values obtained by the AOCS standard method. A correlation coefficient of R 2 = 0.9843 and RMSEC and RMSEP values of, respectively, 3.393 and 3.643 were obtained. After the calibration of the spectrometer, the OHV could be obtained in 2–3 min per sample, a major improvement over conventional wet chemical methods. The advantages of these methodologies are that they do not destroy the sample, have a lower cost, expedite the analysis and do not produce residues. Therefore, they may yield excellent results when used to quantify OHV of soybean polyols obtained by hydroxylation reaction.  相似文献   

3.
The FTIR spectroscopy method was developed for the determination of hexane residues in palm and groundnut (peanut) oils. The method was based on horizontal attenuated total reflectance with a ZnSe crystal at 45° at room temperature, and partial least squares (PLS) statistics were used to derive calibration models. The accuracy of the method was comparable to that of the AOCS Method Ca 3b-87, with coefficients of determination (R 2) of 0.9866 and 0.9810 for palm and groundnut oils, respectively, and SE of calibration of 3.83 and 4.91, respectively. The calibration models were validated, and the R 2 of validation and the SE of prediction computed. The SD of the difference for repeatability for the method was comparable to that for the standard AOCS method when used for palm and groundnut oils. With its speed and ease of data manipulation by computer software, FTIR spectroscopy has an advantage over present chemical methods, which require preparation of the oil using toxic solvents before GC.  相似文献   

4.
β-Carotene content is usually determined by using ultraviolet (UV)-visible spectrophotometry at 446 nm. In this study, two spectroscopic techniques, namely, Fourier transform infrared (FTIR) and near infrared (NIR) spectroscopy, have been investigated and compared to UV-visible spectrophotometry to measure the β-carotene content of crude palm oil (CPO). Calibration curves ranging from 200 to 800 ppm were prepared by extracting β-carotene from original CPO using open-column chromatography. Separate partial least squares calibration models were developed for predicting β-carotene based on the spectral region from 976 to 926 cm−1 for FTIR spectroscopy and 546 to 819 nm for NIR spectroscopy. The correlation coefficient (R 2) and standard error of calibration obtained were 0.972 and 25.2 for FTIR and 0.952 and 23.6 for NIR techniques, respectively. The validation set gave R 2 of 0.951 with standard error of performance (SEP) of 25.78 for FTIR technique and R 2 of 0.979 with SEP of 19.96 for NIR technique. The overall reproducibility and accuracy did not give comparable results to that of spectrophotometric method; however, the standard deviation of prediction was still within ±5% β-carotene content over the range tested. Because of their rapidness and simplicity, both FTIR and NIR techniques provide alternative means of measuring β-carotene content in CPO. In addition, these two spectroscopic techniques are environmentally friendly since no solvent is involved.  相似文献   

5.
Rapid Fourier transform infrared (FTIR) spectroscopy combined with attenuated total reflectance (ATR) was applied for quantitative analysis of virgin coconut oil (VCO) in binary mixtures with olive oil (OO) and palm oil (PO). The spectral bands correlated with VCO, OO, PO; blends of VCO and OO; VCO and PO were scanned, interpreted, and identified. Two multivariate calibration methods, partial least square (PLS) and principal component regression (PCR), were used to construct the calibration models that correlate between actual and FTIR-predicted values of VCO contents in the mixtures at the FTIR spectral frequencies of 1,120–1,105 and 965–960 cm−1. The calibration models obtained were cross validated using the “leave one out” method. PLS at these frequencies showed the best calibration model, in terms of the highest coefficient of determination (R 2) and the lowest of root mean standard error of calibration (RMSEC) with R 2 = 0.9992 and RMSEC = 0.756, respectively, for VCO in mixture with OO. Meanwhile, the R 2 and RMSEC values obtained for VCO in mixture with PO were 0.9996 and 0.494, respectively. In general, FTIR spectroscopy serves as a suitable technique for determination of VCO in mixture with the other oils.  相似文献   

6.
A greener alternative method is proposed for measuring acid values (AV) of fats, oils, and grease (FOG) based on visual titration. Compared with Official Method Cd 3d-63 of the American Oil Chemists' Society (AOCS), this greener alternative method can eliminate the use of toluene, which in turn reduces toxicity and cost. A total of 44 samples of yellow and brown grease with AV ranging from 0.13 to 170.37 (mg KOH) g−1 were titrated using both methods. The alternative titration method can provide accurate and reliable results to determine the AV of FOG by various statistical analyses including repeatability, linear regression, f-test, t-test, and method accuracy calibration with AOCS Cd 3d-63. This low-cost method can be recommended for routine titration in research and development, and in biodiesel plants for most FOG samples.  相似文献   

7.
A Fourier transform infrared (FTIR) edible oil analysis package designed to simultaneously analyze for trans content, cis content, iodine value (IV), and saponification number (SN) of neat fats and oils by using calibrations based on pure triglycerides and derived by application of partial-least-squares (PLS) regression was assessed and validated. More than 100 hydrogenated rapeseed and soybean samples were analyzed by using the edible oil analysis package as well as the newly proposed modification of the AOCS IR trans method with trielaidin in a trans-free oil as a basis for calibration. In addition, ∼1/3 of the samples were subsequently reanalyzed by gas chromatography (GC) for IV and trans content. The PLS approach predicted somewhat higher trans values than the modified AOCS IR method, which was traced to a combination of the inclusion of trilinolelaidin in the calibration set and the effects of baseline fluctuations. Eliminating trilinolelaidin from the triglyceride standards and the use of second-derivative spectra to remove baseline fluctuations produced excellent concurrence between the PLS and modified AOCS IR methods (mean difference of 0.61% trans). Excellent internal consistency was obtained between the IV and cis and trans data provided by the edible oil analysis package, and the relationship was close to that theoretically expected [IV=0.86 (cis + trans)]. The IV data calculated for the GC-analyzed samples matched the PLS IV predictions within 1 IV unit. The trans results obtained by both IR methods were linearly related to the GC data; however, as is commonly observed, the GC values were significantly lower than the IR values, the GC and IR data being related by a slope factor of ∼0.88, with an SD of ∼0.80. The concurrence between the trans data obtained by the two FTIR methods, and between the FTIR and GC-IV data, as well as the internal consistency of the IV, cis and trans FTIR predictions, provides strong experimental evidence that the edible oil analytical package measures all three variables accurately. Co-Director, McGill IR Group.  相似文献   

8.
A new analytical method was developed for the determination of aflatoxins in groundnut and groundnut cakes by Fourier transform infrared (FTIR) spectroscopy using horizontal attenuated total reflectance technique. Groundnut and groundnut cake samples were used in this study. The wave-lengths were selected for the four types of aflatoxins—B1, B2, G1, and G2—and the standards prepared for earch by spiking some clean sample with the aflatoxins in concentrations of 0–1200 parts per billion. A partial least square regression was used to derive the calibration models for each toxin. The coefficients of determination (R 2) of the calibration model were computed for the FTIR spectroscopy predicted values vs. actual values of aflatoxins in parts per billion. The R 2 was found to be 0.9911, 0.9859, 0.9986, and 0.9789 for aflatoxins B1, B2, G1 and G2, respectively. Standard errors of calibration for groundnut samples were found to be 1.80, 2.03, 1.42, and 2.05 for aflatoxins B1, B2, G1, and G2, respectively. Calibration models were validated with an independent set of samples. The R 2 of validation models were computed. The SD of the difference for repeatability of the FTIR method was found to be better than that of the chemical method. Based on the results obtained, FTIR spectroscopy can be a useful instrumental method for determining aflatoxins in oilseeds and oilseed cakes. With its speed and ease of data manipulation by computer software, it is a possible alternative to the standard wet chemical methods for a rapid and accurate routine determination of aflatoxin levels in food and feed.  相似文献   

9.
New FTIR method for the determination of FFA in oils   总被引:3,自引:0,他引:3  
A rapid, practical, and accurate FTIR method for the determination of FFA in edible oils was developed. Analogous to the AOCS titration procedure, the FTIR FFA determination is effected by an acid/base reaction but directly measures the product formed rather than utilizing an end point based on an electrode potential or color change. A suspension of a weak base, potassium phthalimide (K-phthal) in 1-propanol (1-PrOH), is used to convert the FFA present in oils to their carboxylate salt without causing oil saponification, and differential spectroscopy is used to circumvent matrix effects. Samples are first diluted with 1-PrOH, then split, with one-half treated with the K-phthal reagent and the other half with 1-PrOH (blank reagent), their spectra collected, and differential spectra obtained to ratio out the invariant spectral contributions from the oil sample. Quantification of the percentage of FFA in the oil, expressed as %oleic acid, based on measurement of the peak height of the ν (COO) absorption of the FFA salt formed, yielded a calibration with an SE of <0.020% FFA over the range of 0–4%. The method was validated by standard addition and the analysis of Smalley check samples, the results indicating that the analytical performance of the FTIR procedure is as good as or better than that of the standard titrimetric procedure. As structured, the FTIR procedure is a primary method, as calibration is not dependent on reference values provided by another method, and has performance criteria that could lead to its consideration as an instrumental AOCS procedure for FFA determination. The FTIR portion of the analysis is automatable, and a system capable of analyzing ∼60 samples/h was developed that could be of benefit to laboratories that carry out a large number of FFA analyses per day.  相似文献   

10.
Application of FTIR spectroscopy in determining sesamol in sesame seed oil   总被引:2,自引:0,他引:2  
A new analytical method was developed for determining sesamol in sesame seed oil by FTIR spectroscopy. Sesamol was also spiked at 0 to 1000 mg/kg in freshly refined, bleached, and deodorized palm olein (RBDPOo) and groundnut (peanut) oil. FTIR spectra were recorded using a transmission (NaCl) cell accessory at room temperature, and the partial least squares regression statistical method was used to derive calibration models for each oil. The standard errors of calibration were 6.07, 5.88, and 4.24 mg/100 g for sesame, RBDPOo, and groundnut oils, with coefficients of determination (R 2) of 0.9947, 0.9940, and 0.9662, respectively. The calibration models were validated by the “leave-one-out” cross-validation method, and the R 2 of validation, the standard errors of prediction, and SD of the differences for repeatability and accuracy were computed. Our results support the premise that FTIR spectroscopy is an efficient and accurate method for determining minor components such as sesamol in edible oils.  相似文献   

11.
A simple, rapid, and direct Fourier transform infrared (FTIR) spectroscopic method was developed for the determination of moisture content of crude palm oil (CPO). The calibration set was prepared by adding double-distilled water to dried CPO in ratios (w/w) between 0 and 13% moisture. A partial least squares (PLS) regression technique was employed to construct a calibration model followed by cross-validation step. The accuracy of this method was comparable to the accuracy of the American Oil Chemists' Society's vacuum oven method, which is used for determination of moisture and volatile matter, with mean difference (MDa) of 0.0105, a coefficient of determination (R 2) and a standard error of calibration (SEC) of 0.9781 and 0.91, respectively. It is also comparable to the accuracy of the International Union of Pure and Applied Chemistry's distillation method with MDa, R 2, and SEC of 0.0695, 0.9701, and 0.65, respectively. The study showed that midband FTIR spectroscopy combined with the PLS regression calibration technique is rapid and accurate for determination of moisture content of CPO samples with a total analysis time of less than 2 min and less than 2 mL of sample.  相似文献   

12.
An automated protocol for the direct, rapid determination of isolated trans content of neat fats and oils by Fourier transform infrared (FTIR) spectroscopy was devised, based on a simple modification of the standard AOCS trans method, eliminating the use of CS2 and methylation of low trans samples. Through the use of a commercially available, heated transmission flow cell, designed specifically for the analysis of neat fats and oils, a calibration (0–50%) was devised with trielaidin spiked into a certified, trans-free soybean oil. The single-beam spectra of the calibration standards were ratioed against the single-beam spectrum of the base oil, eliminating the spectral interference caused by underlying triglyceride absorptions, facilitating direct peak height measurements as per the AOCS IR trans method. The spectrometer was preprogrammed in Visual Basic to carry out all spectral manipulations, measurements, and calculations to produce trans results directly as well as to provide the operator with a simple interface to work from. The derived calibration was incorporated into the software package, obviating the need for further calibration because the program includes an automatic recalibration/standardization routine that automatically compensates for differences in optical characteristics between instruments, instrument drift over time, and cell wear. The modified AOCS FTIR analytical package was evaluated with Smalley check samples for repeatability, reproducibility, and accuracy, producing SD of ± 0.07, 0.13, and 0.70 trans, respectively, the FTIR predictions being linearly related to the Smalley means (r=0.999; SD=± 0.46), and well within one SD of the Smalley sample means. Calibration transfer was assessed by implementing the calibration on a second instrument and reanalyzing the Smalley check samples in cells of two different pathlengths (25- and 50-μm). There were no statistically significant differences between the FTIR trans predictions obtained for the Smalley samples from the two instruments and two cells, indicating that the software was able to adjust the calibrations to compensate for differences in instrument response and cell pathlength. The FTIR isolated trans analysis protocol developed by the McGill IR Group has the benefit of being based on the principles of an AOCS-approved method, matches its accuracy, and allows the analysis to be performed on both neat fats and oils, producing trans predictions in less than 2 min per sample. It is suggested that this integrated approach to trans analysis, which requires a minimum level of sample manipulation and operator skill, be considered as a modification of the proposed Recommended Practice CD14b-95.  相似文献   

13.
FTIR spectroscopic determination of soap in refined vegetable oils   总被引:1,自引:1,他引:0  
A new analytical method was developed for the determination of soap in palm and groundnut oils by FTIR spectroscopy. Soap from 0 to 80 mg/kg oil was produced in situ in the oils by adding sodium hydroxide. The FTIR spectroscopy was with a sodium chloride transmission cell, and the partial least-squares statistical method was used to calibrate a model for each oil. The accuracy of the method was comparable to that of AOCS Method Cc17-95, with coefficients of determination (R 2) of 0.98 and 0.98 for both palm and groundnut oils. The standard errors of calibration were 1.84 and 1.36 for the two oils, respectively. The calibration models were cross-validated, and the R 2 of cross-validation and standard errors of cross validation were computed. The standard deviation of the difference for repeatability of the FTIR method was better than that for the chemical method used for determining soap in palm and groundnut oils. With its speed and ease of data manipulation by computer software, FTIR spectroscopy is a possible alternative to the standard wet chemical methods for rapid (2 min) and accurate routine determination of soap in chemically refined vegetable oils.  相似文献   

14.
A primary Fourier transform infrared (FTIR) spectroscopic method for the determination of peroxide value (PV) in edible oils was developed based on the stoichiometric reaction of triphenylphosphine (TPP) with hydroperoxides to produce triphenylphosphine oxide (TPPO). Accurate quantitation of the TPPO formed in this reaction by measurement of its intense absorption band at 542 cm−1 provides a simple means of determining PV. A calibration was developed with TPPO as the standard; its concentration, expressed in terms of PV, covered a range of 0–15 PV. The resulting calibration was linear over the analytical range and had a standard deviation of ±0.05 PV. A standardized analytical protocol was developed, consisting of adding ∼0.2 g of a 33% (w/w) stock solution of TPP in hexanol to ∼30 g of melted fat or oil, shaking the sample, and scanning it in a 100-μm KCI IR transmission cell maintained at 80°C. The FTIR spectrometer was programmed in Visual Basic to automate scanning and quantitation, with the reaction/FTIR analysis taking about 2 min per sample. The method was validated by comparing the analytical results of the AOCS PV method to those of the automated FTIR procedure by using both oxidized oils and oils spiked with tert-butyl hydroperoxide. The two methods correlated well. The reproducibility of the FTIR method was superior (±0.18) to that of the standard chemical method (±0.89 PV). The FTIR method is a significant improvement over the standard AOCS method in terms of analytical time and effort and avoids solvent and reagent disposal problems. Based on its simple stoichiometry, rapid and complete reaction, and the singular band that characterizes the end product, the TPP/TPPO reaction coupled with a programmable FTIR spectrometer provides a rapid and efficient means of determining PV that is especially suited for routine quality control applications in the fats and oils industry.  相似文献   

15.
A primary Fourier transform infrared (FTIR) method was developed to determine the hydroxyl value (OHV) of polyols produced from edible oils. The method is a modification of American Society for Testing and Materials 1899‐08, using toluene as the solvent to dissolve the sample and to carry the reactive reagent p‐toluenesulfonyl isocyanate (TSI). TSI reacts with OH groups to produce a carbamate, a functional group that can be measured spectrally between ~1780 and 1690 cm?1 in the differential spectrum that is obtained from spectra collected before and after the reaction. Commercially available 1‐nonanol, which has a defined OHV, is used to develop a calibration. The OHV for a variety of 1° and 2° alcohols, as well as petrochemical and lipid‐based polyols, were then measured to evaluate the performance of the method and to assess the effects of moisture on the results. The FTIR OHV were in accord with the results obtained by AOCS method Cd 13‐60 and were demonstrated to be unaffected by the presence of moisture in the sample. The new TSI‐FTIR method is simpler, much faster (~10 min), and more reproducible and accurate than the AOCS OHV titrimetric methods and is not affected by carboxylic acids, amines or moisture.  相似文献   

16.
A simple, rapid, and direct FTIR spectroscopic method was developed for the determination of BHT content in refined, bleached, and deodorized (RBD) palm olein and RBD palm oil. The method used sodium chloride windows with a 50-mm transmission path. Fifty stripped oil samples of both RBD palm olein and RBD palm oil were spiked with known amounts of BHT concentrations up to 300 mg/kg (ppm). The data were separated into two sets for calibration and validation using partial least squares models. FTIR results for both oils correlated well with results obtained by the IUPAC HPLC-based method. For RBD palm olein, the coefficient of determination (R 2) was 0.9907 and the SE of calibration (SEC) was 8.47 ppm. For RBD palm oil, an R 2 of 0.9848 and an SEC of 10.73 ppm were achieved. Because of the significant decrease in analysis time and reduction in solvent usage, this FTIR method for BHT is especially well suited for routine quality control applications in the palm oil industry.  相似文献   

17.
Previous work in our laboratory demonstrated that soybean oil oxidation, expressed as PV, can be determined using NIR transmission spectroscopy as an alternative to the official AOCS iodometric titration method. In the present study, a comparison of four peroxide analytical methods was conducted using oxidized soybean oil. The methods included the official AOCS iodometric titration, the newly developed NIR method, the PeroxySafe kit, and a ferrous xylenol orange (FOX) method, the latter two being colorimetric methods based on oxidation of iron. Five different commercially available soybean oils were exposed to fluorescent light to obtain PV levels of 0–20 meq/kg; periodic sampling was done to ensure having representative samples throughout the designated range. A total of 46 oil samples were analyzed. Statistical analysis of the data showed that the correlation coefficient (r) and standard deviation of differences (SDD) between the standard titration and NIR methods were r=0.991, SDD=0.72 meq/kg; between titration and the PeroxySafe kit were r=0.993, SDD=0.56 meq/kg; and between the standard titration and FOX method were r=0.975, SDD=2.3 meq/kg. The high correlations between the titration, NIR, and PeroxySafe kit data indicated that these methods were equivalent.  相似文献   

18.
A rapid Fourier transform infrared (FTIR) method was developed to simultaneously determine percentcis andtrans content of edible fats and oils. A generalized, industrial sample-handling platform/accessory was designed for handling both fats and oils and was incorporated into an FTIR spectrometer. The system was calibrated to predict thecis andtrans content of edible oils by using pure triglycerides as standards and partial least squares as the chemometric approach. The efficacy of the calibration was assessed by triglyceride standard addition, by mixing of oils with varyingcis/trans contents, and by analyzing fats and oils of known iodine value. Each of the approaches verified that the FTIR method measured thecis andtrans content in a reproducible (±0.7%) manner, with the measured accuracies being 1.5% for standard addition and 2.5% for the chemically analyzed samples. Comparisons also were made to the conventional American Oil Chemists’ Society (AOCS) method for the determination oftrans isomers by IR spectroscopy. The FTIR-partial least squares approach worked well over a wide range oftrans contents, including those between 0 and 15%. The sample-handling accessory designed for this application is robust, flexible, and easy to use, being particularly suited for quality-control applications. In addition, the analysis was automated by programming the spectrometer in Visual Basic (Windows), to provide a simple, prompt-based user interface and to allow an operator to carry outcis/trans analyses without any knowledge of FTIR spectroscopy. A typical analysis requires less than two minutes per sample. The derived calibration is transferable between instruments, eliminating the need for recalibration. The integrated analytical system provides a sound basis for the implementation of FTIR methods in place of a variety of AOCS wet chemical methods when analytical speed, cost, and environmental concerns are issues.  相似文献   

19.
A method for the simultaneous determination of iodine value (IV) and trans content from the Fourier transform infrared (FTIR) spectra of neat fats and oils recorded with the use of a heated single-bounce horizontal attenuated total reflectance (SB-HATR) sampling accessory was developed. Partial least squares (PLS) regression was employed for the development of the calibration models, and a set of nine pure triacylglycerols served as the calibration standards. Regression of the FTIR/PLS-predicted IV and trans contents for ten partially hydrogenated oil samples against reference values obtained by gas chromatography yielded slopes close to unity and SD of <1. Good agreement (SD<0.35) also was obtained between the trans predictions from the PLS calibration model and trans determinations performed by the recently adopted AOCS FTIR/SBHART method for the determination of isolated trans isomers in fats and oils.  相似文献   

20.
A rapid method for the quantitative determination of iodine value (IV) of palm oil products by FTIR transmission spectroscopy is described. A calibration standard was developed by blending palm stearin and superolein in specific ratios that covered a range of 27.9 to 65.3 IV units. The spectra of these standards was measured in the range between 3050 and 2984 cm−1, corresponding to the absorption band of=C-H cis stretching vibration. A partial least squares calibration model for the prediction of IV was developed to quantify the IV of palm oil products. A validation approach was used to optimize the calibration with a correlation coefficient of R 2=0.9995 and a standard error of prediction of 0.151. This study concludes that the FTIR transmission approach can be used to determine the IV of palm oil products with a total analysis time per sample of less than 2 min for liquid samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号