首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Wei L  Shi D  Ye P  Dai Z  Chen H  Chen C  Wang J  Zhang L  Xu D  Wang Z  Zhang Y 《Nanotechnology》2011,22(42):425501
We developed a chemiresistive sensor based on doped and functionalized semiconducting single-walled carbon nanotube (SWNT) networks for ultrasensitive and rapid detection of dimethyl methylphosphonate (DMMP) (simulant of nerve agent sarin) vapor. The semiconducting SWNT network was deposited between interdigitated electrodes and modified by solid organic acid tetrafluorohydroquinone (TFQ). The TFQ molecules could not only selectively bind DMMP onto the sidewalls of SWNTs via the strong hydrogen bonding interaction, but also tailor the electronic properties of SWNTs via heavy hole doping. This synergetic effect significantly improved the sensitivity of the devices, and enabled the sensors to easily detect DMMP at 20 parts-per-trillion (ppt) concentration with a response time of less than 2 min, without the need for pre-concentration of the analytes. This sensitivity is about five orders of magnitude higher than that of the unmodified SWNT chemiresistor, and also significantly higher than that of the functionalized SWNT chemiresistors previously reported. Moreover, the SWNT-TFQ sensors could be recovered when DMMP is replaced with referencing gas. The SWNT-TFQ sensors also show excellent selectivity toward DMMP over some interfering organic vapors. The response mechanism, i.e. charge transfer and dedoping was investigated.  相似文献   

2.
Hazardous industrial chemical gases pose a significant threat to the environment and human life. Therefore, there is an urgent need to develop a reliable sensor for identifying these hazardous gases. In this work, a silicon wafer microelectrode substrate for a resistance sensor was fabricated using the semiconductor manufacturing process. Conductive carbon nanotubes were then mixed with six different polymers with different chemical adsorption properties to produce a composite thin film for the fabrication of a chemical sensor array. This array was then utilized to identify three hazardous gases at different temperatures. Experimental results for six polymers for chemical gases, such as tetrahydrofuran (THF), chloroform (CHCl3) and methanol (MeOH) at different temperatures, indicate that the variation in sensitivity resistance increased when the sensing temperature increased. The poly(ethylene adipate)/MWNT sensing film had high sensitivity, excellent selectivity, and good reproducibility in detecting all chemical agent vapors. Additionally, this study utilized a bar chart and statistical methods in principal component analysis to identify gases with the polymer/MWNT sensor.  相似文献   

3.
Chemiresistor-based vapour sensors made from network films of single-walled carbon nanotube (SWNT) bundles on flexible plastic substrates (polyethylene terephthalate, PET) can be used to detect chemical warfare agent simulants for the nerve agents Sarin (diisopropyl methylphosphonate, DIMP) and Soman (dimethyl methylphosphonate, DMMP). Large, reproducible resistance changes (75-150%), are observed upon exposure to DIMP or DMMP vapours, and concentrations as low as 25?ppm can be detected. Robust sensor response to simulant vapours is observed even in the presence of large equilibrium concentrations of interferent vapours commonly found in battle-space environments, such as hexane, xylene and water (10?000?ppm each), suggesting that both DIMP and DMMP vapours are capable of selectively displacing other vapours from the walls of the SWNTs. Response to these interferent vapours can be effectively filtered out by using a 2?μm thick barrier film of the chemoselective polymer polyisobutylene (PIB) on the SWNT surface. These network films are composed of a 1-2?μm thick non-woven mesh of SWNT bundles (15-30?nm diameter), whose sensor response is qualitatively and quantitatively different from previous studies on individual SWNTs, or a network of individual SWNTs, suggesting that vapour sorption at interbundle sites could be playing an important role. This study also shows that the line patterning method used in device fabrication to obtain any desired pattern of films of SWNTs on flexible substrates can be used to rapidly screen simulants at high concentrations before developing more complicated sensor systems.  相似文献   

4.
The basic principles of a new surface acoustic wave (SAW) gas sensor are described. Being essentially a sensor of the sorption type, the proposed device possesses certain features of the thermometric SAW sensors and is not only sensitive to the vapors of volatile substances, but capable of detecting gases by their thermal properties as well. In contrast to the known thermometric SAW sensors, the proposed sensor is characterized by high temperature stability and fast response. A variant of the sensor based on a LiNbO3 SAW delay line is described and some results of the test for detecting propane-butane mixtures are presented.  相似文献   

5.
Vacuum-outlet GC with atmospheric-pressure air as the carrier gas is implemented at outlet pressures up to 0.8 atm using a low-dead-volume polymer-coated surface acoustic wave (SAW) detector. Increases in the system outlet pressure from 0.1 to 0.8 atm lead to proportional increases in detector sensitivity and significant increases in column efficiency. The latter effect arises from the fact that optimal carrier gas velocities are lower in air than in more conventional carrier gases such as helium or hydrogen due to the smaller binary diffusion coefficients of vapors in air. A 12-m-long, 0.25-mm-i.d. tandem column ensemble consisting of 4.5-m dimethyl polysiloxane and 7.5-m trifluoropropylmethyl polysiloxane operated at an outlet pressure of 0.5 atm provides up to 4 x 10(4) theoretical plates and a peak capacity of 65 (resolution, 1.5) for a 3-min isothermal analysis. At 30 degrees C, mixtures of vapors ranging in vapor pressure from 8.6 to 76 Torr are separated in this time frame. The SAW detector cell has an internal volume of < 2 microL, which allows the use of higher column outlet pressures with minimal dead time. The sensor response is linear with solute mass over at least 2-3 decades and provides detection limits of 20-50 ng for the vapors tested. The combination of atmospheric-pressure air as carrier gas, modest operating pressures, and SAW sensor detection is well-suited for field instrumentation since it eliminates the need for support gases, permits smaller, low-power pumps to be used, and provides sensitivity to a wide range of vapor analytes.  相似文献   

6.
A novel sensing system is proposed based on the multidimensional information contained in a dynamic nonlinear response. A sinusoidal temperature change was applied to a SnO(2) semiconductor gas sensor, and the resulting output conductance of the sensor was analyzed by fast Fourier transformation (FFT). The higher harmonics of the FFT characterized the nonlinear properties of the response. The amplitudes of the higher harmonics of the FFT exhibit characteristic changes which depend on the chemical structure, concentration, and the kinetics of adsorption and the reaction of hydrocarbon gases and aromatic vapors on the sensor surface. In addition, it is possible to distinguish between gases in a gaseous mixture with a single detector using this dynamic nonlinear response. Nonlinear responses are discussed in relation to the kinetics of the reaction at the sensor surface and the temperature-dependent barrier potential of the semiconductor.  相似文献   

7.
A sensor for the rapid (10-ms response time) measurement of vapors from the hydrocarbon-based fuels JP-8, DF-2, and gasoline is described. The sensor is based on a previously reported laser-mixing technique that uses two tunable diode lasers emitting in the near-infrared spectral region [Appl. Opt. 39, 5006 (2000)] to measure concentrations of gases that have unstructured absorption spectra. The fiber-mixed laser beam consists of two wavelengths: one that is absorbed by the fuel vapor and one that is not absorbed. Sinusoidally modulating the power of the two lasers at the same frequency but 180 degrees out of phase allows a sinusoidal signal to be generated at the detector (when the target gas is present in the line of sight). The signal amplitude, measured by use of standard phase-sensitive detection techniques, is proportional to the fuel-vapor concentration. Limits of detection at room temperature are reported for the vapors of the three fuels studied. Improvements to be incorporated into the next generation of the sensor are discussed.  相似文献   

8.
Organic chemical hazardous gases pose a significant threat to human life and the environment. An urgent need exists for the development of reliable chemical sensors that would be able to identify these hazardous gases. In a recent study, conductive carbon nanotubes were mixed with six polymers with various chemical adsorption properties to produce a composite thin film for the fabrication of a chemical sensor array. A silicon wafer was used as a microelectrode substrate for a resistance sensor fabricated using a typical semiconductor manufacturing process. This sensor array was then used to identify hazardous chemical gases at various temperatures. Results for two hazardous gases, ammonia (NH3) and chloroform (CHCl3), tested with the six polymers at different temperatures, indicated that the variation in sensitivity/resistance increased when the temperature increased. It was found that the MWNTs-PVP and MWNTs-PMVEMA sensing films had high sensitivity, excellent selectivity, and favorable reproducibility in detecting the two chemical agent vapors. In addition, we derived the solubility parameter (Δδ) to demonstrate the sensitivity of the polymers to ammonia (NH3). The results showed that smaller solubility parameter corresponds to a stronger interaction between NH3 gas and polymers, and increased sensitivity. Additionally, we used the statistical methods of principal component analysis to identify the interaction of hazardous gases with the MWNTs-polymer sensor.  相似文献   

9.
Transparent conductive thin films of single-walled carbon nanotubes (SWNTs) and their nanocomposites with an organic conductive polymer, poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT-PSS) with different CNT loadings ranging from 20 to 90 wt% were prepared and doped by exposing them to thionyl chloride (SOCl2) vapors. After exposure to SOCl2 vapor for 1 h, the SWNT film showed about 15-18% increase of electrical conductivity, while on the other hand pristine polymer film showed a decrease of electrical conductivity. The SWNT-polymer composite films showed a drastic increase in conductivity by doping with SOCl2 vapor, most interestingly, the doping effect was much higher for composite films with less CNT weight fraction and it was linearly decreased with increasing CNT loading. For instance, composite film with 10% and 90% CNT loading demonstrated about 65% and 10% increase of electrical conductivity, respectively. The interaction of SOCl2 vapors on SWNTs and composite films is investigated by UV-visible absorption and Raman spectroscopy.  相似文献   

10.
In this study, the electrically conducting polyaniline-titanium(IV)phosphate (PANI-TiP) cation exchange nanocomposite was synthesized by sol-gel method. The cation exchange nanocomposite based sensor for detection of ammonia vapors was developed at room temperature. It was revealed that the sensor showed good reversible response towards ammonia vapors ranging from 3 to 6%. It was found that the sensor with p-toluene sulphonic acid (p-TSA) doped exhibited higher sensing response than hydrochloric acid doped. This sensor has detection limit ≤1% ammonia. The response of resistivity changes of the cation exchange nanocomposite on exposure to different concentrations of ammonia vapors shows its utility as a sensing material. These studies suggest that the cation exchange nanocomposite could be a good material for ammonia sensor at room temperature.  相似文献   

11.
We report on the use of either reactive magnetron sputtering or screen printing to deposit tin and tungsten-oxide gas-sensitive layers onto integrated micromachined arrays. The procedures allow the deposition of the sensing layers before membranes have been etched, which leads to gas microsensors with an excellent fabrication yield. The microstructure of the sensitive films is analyzed by means of SEM and EDX. The response of the different microarrays to ethanol, acetone, and ammonia vapors and their binary mixtures, and toxic gases such as NO/sub 2/ and CO, is studied at different operating temperatures. The response of the different sensors to ambient humidity is also investigated. Finally, it is shown that by using PCA and fuzzy ARTMAP neural networks, it is possible to simultaneously identify and quantify the toxic gases with a 100% success rate. A 95% success rate is obtained in the semi-quantitative analysis of vapors and vapor mixtures. These results prove the viability and usefulness of the techniques introduced to obtain integrated sensor microarrays that are suitable for battery-powered gas/vapor monitors.  相似文献   

12.
Single-walled carbon nanotubes (SWNTs) are Introduced as a chemical sensor for the detection of sulfur dioxide (SO2) molecules. For a single bundle of SWNTs, current-voltage (I-V) curves were measured for a series of different temperatures under adsorption of SO2 molecules. The I-V characteristics for a "MAT"-type thin film SWNTs, with respect to the amount of SO2 adsorbed, were measured at room temperature and compared directly with O2 adsorption. The change in current upon the adsorption of SO2 is distinctly higher than that of O2, and is also reversible for adsorption and successive evacuation. Thus, the results strongly suggested that a thin film of SWNTs can be used as a chemical sensor in the nanometer scale devices.  相似文献   

13.
Transient response curves for exposure to several gases are observed using zinc oxide (ZnO) thin-film gas sensors. It is found that an aluminium-doped ZnO (ZnO:Al) sensor exhibits a high sensitivity and an excellent selectivity for amine gases. In order to discriminate between gas species such as trimethylamine (TMA), dimethylamine (DMA) and other gases pattern recognition analysis using a neural network is carried out using parameters which characterize the transient responses of the sensor for exposure to gases. The recognition probability of the neural network is 90% for TMA and DMA with constant concentration and is 100% for TMA and DMA with different concentrations, except for a concentration of 1 p.p.m.  相似文献   

14.
《IEEE sensors journal》2006,6(4):854-860
A simple design involving a birefringent porous glass oriented between two crossed polarizers serves as the foundation for an optically based sensitive broad-spectrum chemical sensor. Volatile organic compounds (VOCs) such as acetonitrile vapors can be readily detected at concentrations of as low as 50 ppm. Changes are observed in polarized light transmitted by the anisotropic porous material constituting the sensor, upon exposure to VOC-bearing air, as intensity changes at a defined wavelength or as changes in spectral content (color) detectable by the eye. The optical effects resulting from exposure to various vapors are reversible and may result from adsorption of solvent vapors with attendant reduction of anisotropy. The microporous structure as well as the surface chemistry of the sensor may be controlled for tuning the response to VOCs for industrial applications. Miniaturization of the sensor using low-cost materials such as plastic or glass optical fibers, Polaroid films, and birefringent porous glass is demonstrated. The sensor described in this paper could use ambient light as source and the eye as detector (color change) or electronically controlled light emission and detection for better sensitivity and real time monitoring of VOCs. Such intrinsic explosion proof sensors could be used to safely monitor VOC levels in remote environments.  相似文献   

15.
To improve the selectivity of semiconductor gas sensors, temperature modulation is often used. We present a study showing the potential of this technique with information gained comparable to multisensor systems. A dynamic operating mode coupled with a low-complexity evaluation strategy allows the identification of six organic solvent vapors over a wide concentration range (2-200 ppm) with a single sensor, for example, for leak detection systems. The system features low false alarm rates; in addition, interference by other gases, such as CO or NO/sub 2/, can be suppressed. For even higher identification power, switching on-line between different temperature cycles was studied, which provides better information for critical decisions.  相似文献   

16.
Surface acoustic wave (SAW) sensor on ATquartz piezoelectric substrate has been designed and fabricated. Test devices were based on asynchronous single-port resonators operating near the 434-MHz-centered industrial, scientific, and medical band. Multi-Walled Carbon Nanotubes/Ceria (MWNTs/CeO2) nanocomposites were used as sensitive layers. The MWNTs were synthesized by catalytic chemical vapor deposition method and coated with nanosized ceria oxide. The composites were deposited on SAW quartz resonator using air-brush technique. MWNTs/CeO2 nanocomposites were characterized using X-ray diffraction, transmission electron and atomic force microscopy. The sensor responses were tested under acetone (C3H5OH) and ethanol (C2H5OH) gases. The output signal was done by S11 parameter of the SAW device and was monitored using a network analyzer. Frequency changes were observed under acetone and ethanol vapors. These changes depended on the surface conductivity of the nanocomposites deposited on the sensor. The single-port SAW gas sensor coated with the MWNTs/CeO2 presented the highest sensitivity in the case of acetone vapor interacting with these layers, with a frequency shift of 200 kHz at room temperature.  相似文献   

17.
A novel thermal-wave resonant cavity (TWRC) was constructed and used for thermophysical measurements of gases and vapors, with an AC current-heated thin-film resistive element acting as a thermal-wave source. A thin-film pyroelectric element was used both as a cavity wall and as a signal transducer. A theoretical model of the cavity length-scanned thermal-wave field was developed to quantify the standing-wave resonance antinode patterns in the demodulated lock-in signal output in-phase and quadrature channels. These resonance extrema were used to measure precisely the thermal diffusivity of the intracavity gas or vapor. Seven high-purity gases (nitrogen, dry air, oxygen, methane, hydrogen in nitrogen, pure hydrogen, and helium) were measured using the cavity. Fourth-significant-figure precision was obtained for this parameter, with standard deviations less than 0.32% for the five measurements performed with each gas. Furthermore, three grades of gasoline vapors from Imperial Oil were studied with the cavity. The measured thermal diffusivities showed that the TWRC can monitor fundamental evaporation kinetics as an analytical quality-control instrument. These results, together with the simplicity of TWRC sensor fabrication, are indicative of its potential to become a new standard measurement instrument for the determination of gas thermal diffusivity with improved precision, and a new in situ monitor of chemical evaporation kinetics over conventional methodologies, such as gas chromatography and mass spectrometry.  相似文献   

18.
Protective-layer-coated single-walled carbon nanotubes (SWNTs) with palladium nanoparticle decoration (Pd-SiO(2)-SWNTs) were fabricated and their sensing properties for hydrogen (H(2)) were investigated. SWNTs were coated with a 3-4?nm thick SiO(2) layer by pulsed laser deposition and subsequently decorated with Pd nanoparticles by electron beam evaporation. Even though the SWNTs were completely surrounded by a protective layer, Pd-SiO(2)-SWNTs responded to H(2) down to a concentration of 1 part per million. Compared with the Pd nanoparticle-decorated SWNTs without a protective layer (Pd-SWNTs), Pd-SiO(2)-SWNTs exhibited highly stable sensor responses with variations of less than 20%; Pd-SWNTs showed a variation of 80%. The density of the Pd-SWNTs significantly decreased after the sensing test, while that of the Pd-SiO(2)-SWNTs with the netlike structure remained unchanged. The hydrogen sensing mechanism of the Pd-SiO(2)-SWNTs was attributed to the chemical gating effect on the SWNTs due to dipole layer formation by hydrogen atoms trapped at the Pd-SiO(2) interface. Moreover, the relationship between H(2) concentration and sensor response can be described by the Langmuir isotherm for dissociative adsorption.  相似文献   

19.
Ultramicroelectrodes (UMEs) fabricated from networks of chemical vapor deposited single-walled carbon nanotubes (SWNTs) on insulating silicon oxide surfaces are shown to offer superior qualities over solid UMEs of the same size and dimensions. Disk shaped UMEs, comprising two-dimensional "metallic" networks of SWNTs, have been fabricated lithographically, with a surface coverage of <1% of the underlying insulating surface. The electrodes are long lasting and give highly reproducible responses (either for repeat runs with the same electrode or when comparing several electrodes with the same size). For redox concentrations 相似文献   

20.
Jin X  Yu L  Garcia D  Ren RX  Zeng X 《Analytical chemistry》2006,78(19):6980-6989
A novel sensor array using seven room-temperature ionic liquids (ILs) as sensing materials and a quartz crystal microbalance (QCM) as a transducer was developed for the detection of organic vapors at ambient and elevated temperatures. Ethanol, dichloromethane, benzene, and heptane were selected as representative gas analytes for various kinds of environmental pollutants and common industrial solvents. The QCM/IL sensors responded proportionately and reversibly to the organic vapor concentrations (i.e., ethanol, heptane, and benzene) in the gas phase from 0 to 100% saturation at room and elevated temperatures (e.g., 120 degrees C) but deviated from this linear relationship at high concentrations for dichloromethane, a highly volatile compound. Linear discriminant analysis was used to analyze the sensing patterns. Excellent classifications were obtained for both known and unknown concentrations of vapor samples. The correct classifications were 100% for known concentration samples and 96% for samples with unknown concentrations. Thermodynamics and ATR-FT-IR studies were conducted to understand specific molecular interactions, the strength of the interaction between ILs and organic vapors, and the degree of ordering that takes place upon dissolution of the vapors in ILs. The different response intensity of the QCM/IL sensors to the organic vapors depends on the different solubilities of organic vapors in ILs and varying molecular/ion interactions between each organic vapor and IL. The diverse set of IL studied showed selective responses due to structural differences. Therefore, a sensor array of ILs would be able to effectively differentiate different vapors in pattern recognitions, facilitating discrimination by their distinctive patterns in response to organic vapors in both room and high temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号