共查询到19条相似文献,搜索用时 109 毫秒
1.
2.
3.
基于综合型模糊支持向量机的故障诊断方法及应用 总被引:1,自引:2,他引:1
设备信息和故障的不确定性、模糊性及故障样本的缺乏给故障诊断带来了较大的困难.针对该问题,分析了现有模糊支持向量机的原理和优缺点,提出了一种综合型模糊支持向量机.该模糊支持向量机既可以处理样本含有模糊信息的情况,又可以解决支持向量机分类中存在的不可分问题.然后,提出了基于综合型模糊支持向量机的故障诊断方法,并在某电路系统故障诊断中开展了应用研究.应用结果表明,该诊断方法在设备状态存在模糊性和故障样本较少的情况下,与现有模糊支持向量机诊断方法相比,实现了较准确的故障诊断. 相似文献
4.
电机故障将造成巨大的经济损失,甚至于人身安全.一个准确的故障诊断系统能够最大程度地降低风险,有利于生产、生活的正常进行.阐述了支持向量机(SVM)及最小二乘支持向量机(LS-SVM)算法的原理,研究了基于LS-SVM的异步电动机故障诊断,比较了正常状况与3类故障的不同,并对3类故障进行了自动分类,测试了分类结果.实验表明,基于SVM的异步电机故障诊断可靠性好,实用性强,验证了SVM的优越性. 相似文献
5.
基于支持向量机的离心泵故障诊断方法研究 总被引:4,自引:0,他引:4
简要论述了支持向量机的原理,介绍了几种支持向量机的多类分类算法,最后将它们应用于离心泵的故障诊断进行比较,获得了令人满意的效果。 相似文献
6.
7.
8.
基于支持向量机的航空发动机故障诊断 总被引:8,自引:0,他引:8
支持向量机学习方法以结构风险最小化原则取代传统机器学习方法中的经验风险最小化原则,在有限样本的学习中显示出优异的性能。本文将这一新的统计学习方法应用到航空发动机故障诊断的研究中,并通过某型航空发动机故障诊断的实验结果表明了本文方法的有效性。 相似文献
9.
基于支持向量机的齿轮故障诊断方法 总被引:3,自引:0,他引:3
对齿轮故障诊断的特点进行了阐述,指出由于环境噪声的干扰,在齿轮故障诊断中往往不能获得理想的诊断结果。为此在对齿轮运行状况进行有效特征提取的基础上,采用支持向量机的方法对齿轮进行故障诊断。研究结果表明采用该方法可以获得比神经网络和线性判别方法等更准确的诊断结果。 相似文献
10.
支持向量机在设备故障诊断方面的应用研究概述 总被引:1,自引:0,他引:1
分析了支持向量机(support Vector Machine—SVM)的原理,并就近年来在设备故障诊断方面的应用研究进行了综述,讨论了SVM的优点和不足,展望了其在设备故障诊断的研究前景。 相似文献
11.
吴德会 《振动、测试与诊断》2008,28(4)
提出了一种基于多分类支持向量机(简称MSVM)的齿轮箱故障诊断方法。先根据齿轮箱故障机理和振动特点,探讨了齿轮箱故障诊断试验方案。再测取齿轮箱振动信号,并提取了能反映齿轮箱运转信息的时频域特征参数。通过结合投票法和决策树的基本思想,有针对性地构造了多分类支持向量机决策结构并将其应用于齿轮箱故障诊断。实际齿轮箱故障诊断试验结果表明,该决策结构较好地解决了小样本学习问题,避免了人工神经网络进行诊断时出现的过学习、收敛速度慢、泛化能力弱等缺点,能有效应用于齿轮箱故障诊断。 相似文献
12.
13.
基于最小风险的SVM及其在故障诊断中的应用 总被引:2,自引:1,他引:2
结合两类错误分类造成损失不等这一故障诊断特点,提出了基于最小风险的SVM方法。进行了三个方面的研究:a.在P1att提出的样本后验概率基础上,给出了修正的分类面以及修正的后验概率估算方法,并分析了该方法的合理性;b.将最小风险决策与SVM输出的后验概率有机融合,使该方法对故障的诊断更加敏感,减小漏判概率;c.以电液伺服阀故障诊断为例,对样本数据经K-L变换后进行可视化研究,分类结果表明了该方法的可行性。 相似文献
14.
15.
16.
17.
18.