首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of binders such as ammonium aluminum sulphate, phosphoric acid and composite binder on the properties of lightweight bubble alumina ceramic was studied. The composite binder was composed of ammonium aluminum sulphate and phosphoric acid. Ammonium aluminum sulphate solution can improve compressive strength of alumina bubbles effectively but can not improve that of lightweight bubble alumina ceramic due to the fewer nano-alumina powders in situ decomposed of ammonium alumina sulphate. Trans-ball fractures occurred in thermal shock test. Phosphoric acid solution can improve compressive strength of alumina bubble ceramic because of promoting sintering properties of aluminum phosphate in situ produced by phosphoric acid and alumina component during sintering but decrease that of alumina bubbles. Along-ball fractures occurred in thermal shock test. The composite binder combined with the advantages of ammonium alumina sulphate and phosphoric acid and improved the compressive strength of both alumina bubbles and lightweight bubble alumina ceramic, and effectively reduce the amount of the binders and lower the product cost. At the sintering temperature of 1700 °C, with composite ammonium alumina sulphate and phosphoric acid as binder, the density of lightweight bubble alumina ceramic was between 1.20 and 1.60 g/cm3, and the compressive strength was 18-42 MPa.  相似文献   

2.
Magnesium aluminate, MgAl2O4 (MA), microplatelets were synthesized using a molten salt technique. -Alumina platelets partially decomposed from aluminium sulphate were reacted with either commercial magnesium oxide or magnesium nitrate in the molar ratio 1:1 to synthesize spinel platelets. Molten salts such as chloride, MCl (M = Li, Na, and K) and potassium sulphate were used for MA synthesis and the salt to oxide ratio was kept at 3:1 for all compositions. Reactants and molten salt mixes were fired in an alumina crucible for 3 h at from 800 to 1150 °C. XRD revealed complete MA without formation of any secondary phase for powders fired for 3 h at 1100 °C. Electron microscopy revealed the MA platelet morphology and size was the same as the -alumina platelets indicating a ‘template process’ during molten salt synthesis.  相似文献   

3.
The previously described “redoxokinetic effect” is used to indicate the end-points of titrations of Fe2+ with Cr2O72-, sulphuric acid with sodium hydroxide, AsO2- with I2 and Ag+ with Cl. With the first three systems an accuracy of 0·1 per cent is possible. The method is not suited to the fourth system.

Abstract

Titrations of sulphuric acid vs. sodium hydroxide at 0·1 N concentration and ferrous ammonium sulphate vs. potassium dichromate at 0·05 N concentration can be carried out with an accuracy of ±0·1 per cent using the redoxokinetic technique. A very sharp end-point was obtained in the case of iodine vs. arsenite titration at 0·1 N concentration. Silver nitrate vs. chloride titrations cannot be carried out by the redoxokinetic technique.

Addition of MnSO4 to the extent of 50 g/l. of the solution enhances the precision considerably in the titration of dilute solutions of ferrous ammonium sulphate with dichromate.  相似文献   


4.
The effect of support material on the catalytic performance for methane combustion has been studied for bimetallic palladium–platinum catalysts and compared with a monometallic palladium catalyst on alumina. The catalytic activities of the various catalysts were measured in a tubular reactor, in which both the activity and stability of methane conversion were monitored. In addition, all catalysts were analysed by temperature-programmed oxidation and in situ XRD operating at high temperatures in order to study the oxidation/reduction properties.

The activity of the monometallic palladium catalyst decreases under steady-state conditions, even at a temperature as low as 470 °C. In situ XRD results showed that no decomposition of bulk PdO into metallic palladium occurred at temperatures below 800 °C. Hence, the reason for the drop in activity is probably not connected to the bulk PdO decomposition.

All Pd–Pt catalysts, independently of the support, have considerably more stable methane conversion than the monometallic palladium catalyst. However, dissimilarities in activity and ability to reoxidise PdO were observed for the various support materials. Pd–Pt supported on Al2O3 was the most active catalyst in the low-temperature region, Pd–Pt supported on ceria-stabilised ZrO2 was the most active between 620 and 800 °C, whereas Pd–Pt supported on LaMnAl11O19 was superior for temperatures above 800 °C. The ability to reoxidise metallic Pd into PdO was observed to vary between the supports. The alumina sample showed a very slow reoxidation, whereas ceria-stabilised ZrO2 was clearly faster.  相似文献   


5.
In this work, we investigated the activity and stability of Ag–alumina catalysts for the SCR of NO with methane in gas streams with a high concentration of SO2, typical of coal-fired power plant flue gases. Ag–alumina catalysts were prepared by coprecipitation–gelation, and dilute nitric-acid solutions were used to remove weakly bound silver species from the surface of the as prepared catalysts after calcination. SO2 has a severe inhibitory effect, essentially quenching the CH4-SCR reaction on this type catalysts at temperatures <600 °C. SO2 adsorbs strongly on the surface forming aluminum and silver sulfates that are not active for CH4-SCR of NOx. Above 600 °C, however, the reaction takes place without catalyst deactivation even in the presence of 1000 ppm SO2. The reaction light-off coincides with the onset of silver sulfate decomposition, indicating the critical role of silver in the reaction mechanism. SO2 is reversibly adsorbed on silver above 600 °C. While alumina sites remain sulfated, this does not hinder the reaction. Sulfation of alumina only decreases the extent of adsoption of NOx, but adsorption of NOx is not the limiting step. Methane activation is the limiting step, hence the presence of sulfur-free Ag–O–Al species is a requirement for the reaction. Strong adsorption of SO2 on Ag–alumina decreases the rates of the reaction, and increases the activation energies of both the reduction of NO to N2 and the oxidation of CH4, the latter more than the former. Our results indicate partial contribution of gas phase reactions to the formation of N2 above 600 °C. H2O does not inhibit the reaction at 625 °C, and the effect of co-addition of H2O and SO2 is totally reversible.  相似文献   

6.
The photocatalytic properties of sulphated MoOx/γ-Al2O3 catalysts in cyclohexane oxidative dehydrogenation have been determined in a two-dimensional fluidized bed photoreactor and compared to those of sulphated MoOx/TiO2 catalysts. Photocatalytic tests on MoOx/γ-Al2O3 at 8 wt% MoO3 and various sulphate contents showed the selective (100%) formation of cyclohexene, without production of benzene, as instead found with MoOx/TiO2. These results show that the selectivity of photocatalytic cyclohexane oxydehydrogenation is dramatically influenced by the catalyst support.

Maximum cyclohexane conversion and cyclohexene yield of 11% were obtained for SO4 content of 2.6 wt% at 120 °C. Physico-chemical characterisation of catalysts indicates the presence of both octahedral polymolybdate and sulphate species on alumina surface, as previously found for titania. Increasing sulphate load, thermogravimetry evidenced the presence of up to three sulphate species at different thermal stability. The lower activity observed at high sulphate content is likely due to polymolybdate decoration by sulphates.  相似文献   


7.
Well crystallised aluminium borate Al18B4O33 has been synthesised from alumina and boric acid with a BET area of 18 m2/g after calcination at 1100 °C. Afterwards, 2 wt.% Pd/Al18B4O33 was prepared by conventional impregnation of Pd(NO3)2 aqueous solution and calcination in air at 500 °C. The catalytic activity of Pd/Al18B4O33 in the complete oxidation of methane was measured between 300 and 900 °C and compared with that of Pd/Al2O3. Pd/Al18B4O33 exhibited a much lower activity than Pd/Al2O3 when treated in hydrogen at 500 °C or aged in O2/H2O (90:10) at 800 °C prior to catalytic testing. Surprisingly, a catalytic reaction run up to 900 °C in the reaction mixture induced a steep increase of the catalytic activity of Pd/Al18B4O33 which became as active as Pd/Al2O3. Moreover, the decrease of the catalytic activity observed around 750 °C for Pd/Al2O3 and attributed to PdO decomposition into metallic Pd was significantly shifted to higher temperatures (820 °C) in the case of Pd/Al18B4O33. The existence of two distinct types of PdO species formed on Al18B4O33 and being, respectively, responsible for the improvement of the activity at low and high temperature was proposed on the basis of diffuse reflectance spectroscopy and temperature-programmed desorption of O2.  相似文献   

8.
Hollow alumina microspheres have been prepared by microwave-induced (MI) plasma pyrolysis of atomized aerosols of precursor solutions and subsequent calcination at 1300 °C for 2 h. When an aqueous solution of 0.5 mol dm−3 Al(NO3)3 without any additives was used as a precursor, hollow -Al2O3 microspheres with a thick shell wall were prepared after post-calcination at 1300 °C. The addition of a polypropylene (PO)–polyethylene(EO) blockcopolymer (molecular weight: 2900–6500) to the precursor solution was effective for increasing the yield of hollow microspheres, but resulted in the formation of many cracks and holes in the thinned shell wall. Hollow alumina microspheres with a thin, but strong, shell layer could be prepared by the simultaneous addition of tetraethylorthosilicate.  相似文献   

9.
The salt-induced precipitation of lysozyme from aqueous solutions was studied at 25 °C and various pH values by cloud-point investigations, precipitation experiments (analysing the compositions of the coexisting phases) and microscopic investigations of the precipitates. Sodium sulphate as well as ammonium sulphate were used to induce the precipitation. The experimental results are discussed and used to develop a scheme of the phase equilibrium in water-rich aqueous solutions of lysozyme and either Na2SO4 or (NH4)2SO4.  相似文献   

10.
Spherical hollow alumina powders (alumina microshells) were prepared from evaporation of water-in-oil (w/o) type emulsions by employing an aqueous Al(NO3)3 solution as water, mineral oil as the organic phase and a non-ionic surfactant, Arlacel 83, as the emulsifier. It was found that 65% mineral oil, 30% aqueous Al(NO3)3 and 5% Arlacel 83 composition produced stable, w/o type emulsions by mechanical stirring at 20°C. The aluminum ion concentration was varied between 0·25 and 2·0 to investigate its effect on the emulsion droplet size. Alumina microshells obtained from the evaporation of w/o emulsions were characterized with respect to size and distribution. The influence of aluminum ion concentration on these properties was also studied.  相似文献   

11.
Nano-scale, binary, 4.5 wt.% Fe–0.5 wt.% M (M = Pd, Mo or Ni) catalysts supported on alumina have been shown to be very effective for the decomposition of lower alkanes to produce hydrogen and carbon nanofibers or nanotubes. After pre-reduction at 700 °C, all three binary catalysts exhibited significantly lower propane decomposition temperatures and longer time-on-stream performances than either the non-metallic alumina support or 5 wt.% Fe/Al2O3. Catalytic decomposition of propane using all three catalysts yielded only hydrogen, methane, unreacted propane, and carbon nanotubes. Above 475 °C, hydrogen and methane were the only gaseous products. Catalytic decomposition of cyclohexane using the (4.5 wt.% Fe–0.5 wt.% Pd)/Al2O3 catalyst produced primarily hydrogen, benzene, and unreacted cyclohexane below 450 °C, but only hydrogen, methane, and carbon nanotubes above 500 °C. The carbon nanotubes exhibited two distinct forms depending on the reaction temperature. Above 600 °C, they were predominantly in form of multi-walled nanotubes with parallel walls in the form of concentric graphene sheets. At or below 500 °C, carbon nanofibers with capped and truncated stacked-cone structure were produced. At 625 °C, decomposition of cyclohexane produced a mixture of the two types of carbon nanostructures.  相似文献   

12.
Sulfidation of trimetallic CoNiMo/Al2O3 catalysts was studied by thermogravimetry at 400 °C under flow and pressure conditions. Results were compared with those obtained on prepared and industrial CoMo/Al2O3 and NiMo/Al2O3 catalysts. The amount of sorbed H2S on the sulfided solids was measured at 300 °C in the H2S pressure range 0–3.5 MPa at constant H2 pressure (3.8 MPa). The adsorption isotherms were simulated using a model featuring dissociated adsorption of H2S on supported metal sulfides and bare alumina. The amount of sulfur-vacancy sites could thus be determined under conditions close to industrial practice. A relationship with activity results for thiophene HDS and benzene hydrogenation was sought for.  相似文献   

13.
Monodispersed nano-Au/γ-Al2O3 catalysts for low-temperature oxidation of CO have been prepared via a modified colloidal deposition route, which involves the deposition of dodecanethiolate self-assembled monolayer (SAM)-protected gold nanoparticles (C12 nano-Au) in hexane on γ-Al2O3 at room temperature. The diameter of the gold nanoparticles deposited on the support is 2.5 ± 0.8 nm after thermal treatment, and their valence states comprise both the metallic and oxidized states. It is found that the thermal treatment temperature affects significantly the catalytic activity of the catalysts in the processing steps. The catalyst treated at 190 °C exhibits considerably higher activity as compared to catalysts treated at 165 and 250 °C. A 2.0-wt.% nano-Au/γ-Al2O3 catalyst treated at 190 °C for 15 h maintains the catalytic activity at nearly 100% CO oxidation for at least 800 h at 15 °C, at least 600 h at 0 °C, and even longer than 450 h at −5 °C. Evidently, the catalysts obtained using this preparation route show high catalytic activity, particularly at low temperatures, and a good long-term stability.  相似文献   

14.
The paper presents results of an investigation on the effect of initial curing conditions on the sulphate resistance of concrete made with ordinary portland cement and using pfa, silica fume and ground granulated blast furnace slag for partial replacement of cement. In addition, porosity and pore structure analysis of representative pastes was carried out to examine the relationship between these properties and sulphate resistance of concrete. The depth of carbonation in specimens of pastes was also determined.

Three different initial curing conditions immediately after casting of specimens were adopted, namely: WET/AIR CURED at 45°C, 25% RH; AIR CURED at 45°C, 25% RH; AIR CURED at 20°C, 55% RH. The results show that pore volume and pore structure of the paste bear no direct relationship with the sulphate resistance of concrete. The presence of a carbonated layer on the surface is generally accompanied by superior sulphate resistance—there are, however, important exceptions. Low humidity curing at high temperature (45°C) results in higher depths of carbonation but lower sulphate resistance than similar curing at 20°C.

The sulphate resistance of concrete increases with the replacement of cement with 22% pfa, 9% silica fume and 80% ggb slag. The sulphate resistance also increases due to drying out of concrete during early curing at low relative humidity and due to carbonation. The possible common factor which leads to this improved sulphate resistance is the reduced Ca(OH)2 content which leads to smaller volume of the expansive reaction products with sulphate ions. The effect of initial curing at high temperature (45°C) is significantly harmful to the sulphate resistance of plain concrete but much less so to the blended cement concretes.  相似文献   


15.
A porous anodic alumina film was prepared by the anodic oxidation of Al metal sheet in a thermostated and vigorously stirred bath of H2SO4 15% (w/v) at a temperature of 25°C and a current density of 15 mA cm−2. It had a geometric surface area of 33 cm2, a surface density of pores 1.269×1011 cm−2 and the maximum limiting thickness and porosity achieved at these conditions which are 50.3 μm and 0.42, respectively. This oxide was tried in the catalytic test reaction of the decomposition of HCOOH at temperatures 270–390°C. Then, the oxide was treated hydrothermally in H2O at 100°C for 5 h and tried in the same test reaction. The procedure of hydrothermal treatment and catalysis experiment was repeated 40 times. In all cases the oxide showed an almost exclusively dehydrative catalytic effect, 98–100%. Both the total activity of the alumina film with the aforementioned constant geometric surface area and its specific activity referred to the unit of oxide mass gave a maximum in the first and a minimum about the fourth hydrothermal treatment; then, they increased strongly with the order of hydrothermal treatment. Despite the decrease of the oxide mass during hydrothermal treatment, the final promotion of the total catalytic activity of oxide was 13.7–10.6 times that of non-treated oxide for temperatures 330–390°C. The corresponding promotion of specific activity was 31.5–24.5 times that of the non-treated oxide. The results of the present study showed that the successive hydrothermal and thermal treatments of porous anodic Al2O3 films produce more and more active alumina catalysts. In this way ultra-active alumina catalysts or supports can be prepared.  相似文献   

16.
The deactivation of a commercial type V2O5-WO3-TiO2 monolith catalyst under biomass combustion was studied at a full-scale grate-fired power plant burning straw/wood using a slip stream pilot scale reactor. The aerosols in the flue gas consisted of a mixture of potassium chloride and sulphate. Three catalyst elements were exposed at 350 °C, and one element was exposed at 250 °C for comparison. The catalyst activity was measured in the reactor at the exposure temperature by addition of NH3 and extra NO. The activity, in terms of a first-order rate constant, dropped by 52% after about 1140 h indicating a very fast deactivation compared to coal firing. It was also found that the reactor temperature was not of importance for the deactivation rate. SEM-EDX analysis showed that particle deposition and pore blocking contributed to the deactivation by decreasing the diffusion rate of NO and NH3 into the catalyst. However, potassium also penetrated into the catalyst wall and the resulting average K/V ratio in the catalyst structure was high enough (about 0.3–0.5) for a significant chemical deactivation. Chemisorption studies carried out in situ showed that the amount of chemisorbed NH3 on the catalyst decreased as a function of exposure time, which reveals that Brøndsted acid sites had reacted with potassium compounds and thereby rendered inactive. When washed by 0.5 M H2SO4 the regenerated catalyst regains a higher activity than that of the fresh catalyst at temperatures higher than 300 °C, but even though reactivation is possible, the deactivation rate appears too high for practical use of the SCR process in straw combustion.  相似文献   

17.
Alumina reinforced by SiC whisker, called here “alumina(w)” was developed with the objective of improving fracture toughness and crack-healing ability. The composites were crack-healed at 1200 °C for 8 h in air under elevated static and cyclic stresses. The bending strength at 1200 °C of the crack-healed composites were investigated. The threshold static stress during crack-healing of alumina(w) has been determined to be 250 MPa, and the threshold cyclic stress was found to be 300 MPa. Considering that the crack growth is time-dependent, the threshold stress of every condition during crack-healing of alumina(w) was found to be 250 MPa. The results showed that the threshold stress intensity factor during crack-healing was 3.8 MPa m1/2. The same experiment conditions were applied to specimens cracked and annealed at 1300 °C for 1 h in Ar, to remove the tensile residual stress at a tip of the crack. Thus, the threshold stress intensity factor during crack-healing was found to be 3.2 MPa m1/2 for the specimens crack-healed with annealing. The threshold stress intensity factor during crack-healing of alumina(w) was chosen to be 3.2 MPa m1/2 to facilitate comparison with the values of the threshold stress intensity factor during crack-healing. The residual stress was slightly larger than the intrinsic value.  相似文献   

18.
Zirconia polycrystals stabilised with 7 mol.% CaO containing 10 vol.% WC particles (Ca-PSZ/WC) were obtained by using zirconia nanopowder and WC micropowder. Cold isostatically pressed samples were pressureless sintered in argon at 1350–1950 °C. The influence of the sintering temperature and the incorporation of WC particles on the phase composition and mechanical properties of the composites were studied. Decomposition of WC due to the reaction with the zirconia matrix was found. W2C and metallic tungsten were detected as decomposition products when heat treated below 1750 °C. At higher temperatures, ZrC is formed. The mechanism of WC decomposition was discussed. The zirconia polycrystals modified with in situ formed W and W2C inclusions showed a bending strength of 417 ± 67 MPa, a fracture toughness of 5.2 ± 0.3 MPa m0.5 and a hardness of 14.6 ± 0.3 GPa.  相似文献   

19.
We have investigated the regeneration of a nitrated or sulphated model Pt/Ba-based NOx trap catalyst using different reductants. H2 was found to be more effective at regenerating the NOx storage activity especially at lower temperature, but more importantly over the entire temperature window after catalyst ageing. When the model NOx storage catalyst is sulphated in SO2 under lean conditions at 650 °C almost complete deactivation can be seen. Complete regeneration was not achieved, even under rich conditions at 800 °C in 10% H2/He. Barium sulphate formed after the high temperature ageing was partly converted to barium sulphide on reduction. However, if the H2 reduced sample was exposed to a rich condition in a gas mixture containing CO2 at 650 °C, the storage activity can be recovered. Under these rich conditions the S2− species becomes less stable than the CO32−, which is active for storing NOx. Samples which were lean aged in air containing 60 ppm SO2 at <600 °C, after regeneration at λ=0.95 at 650 °C, have a similar activity window to a fresh catalyst. It is, therefore, important that CO2 is present during the rich regenerations of the sulphated model samples (as of course it would be under real conditions), as suppression of carbonate formation can lead to sulphide formation which is inactive for NOx storage.  相似文献   

20.
Mullite–zirconia porous bodies were prepared by reaction sintering of zircon and alumina derived from oxidation reaction of Al at sintering temperatures between 1200 and 1600 °C. The results show that the incorporation of TiO2 improves the oxidation reaction of Al, dissociation of zircon subsequently formation of mullite and zirconia. Composites containing TiO2 obtain a high tetragonal concentration at 1500 °C, which reduces by increasing sintering temperature to 1600 °C. No tetragonal zirconia phase was detected at 1500 °C in TiO2-free composites while tetragonal concentration was increased over this temperature. The major oxidation reaction of Al proceeds with a liquid–gas mechanism that is suitable for producing low dense ceramics. In spite of the higher porosity of the composites containing TiO2, they possess almost the same flexural strength values as obtained from the TiO2-free composites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号