首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, the effects of Li2O–B2O3–Bi2O3–SiO2 (LBBS) glass on the phase formation, sintering characteristic, the microstructure and microwave dielectric properties of temperature-stable (Mg0.95Co0.05)2TiO4–Li2TiO3 ceramics were investigated. (Mg0.95Co0.05)2TiO4–Li2TiO3 powders were obtained by using the traditional solid-state process. A small amount of LBBS doping can effectively reduce sintering temperature and promote the densification of the ceramics. X-ray diffraction analysis revealed not only the primary phase (Mg·Co)2TiO4 associated with Li2TiO3 minor phase but also a third phase (Mg·Co)TiO3. The dielectric constant and Qf values vary with the doping amount of LBBS and sintering temperatures. With the compensation of the positive temperature coefficient (τ f ) of Li2TiO3 and the negative τ f of (Mg0.95Co0.05)2TiO4, the τ f of the specimens fluctuates around zero. The (Mg0.95Co0.05)2TiO4 ceramic with 2.5 wt% LBBS addition and sintering at 900?°C for 4 h exhibited excellent microwave dielectric properties: ? r ?=?19.076, Qf?=?126100 GHz, and τ f ?=?0.98 ppm/°C.  相似文献   

2.
TiO2–NiO and TiO2–WO3 nanocomposites were prepared by hydrothermal and surface modification methods. The samples were analyzed using X-ray diffraction, Scanning Electron Microscope images, Transmission Electron Microscope, Energy dispersive analysis, Zeta potential, Electrophoretic mobility and Photocatalysis activity measurement. XRD data sets of TiO2–NiO, TiO2–WO3 powder nanocomposite have been studied for the inclusion of NiO, WO3 on the anatase-rutile mixture phase of TiO2 by Rietveld refinement. The cell parameters, phase fraction, the average grain size, strain and bond lengths between atoms of individual phases have been reported in the present work. Shifted positional co-ordinates of individual atoms in each phase have also been observed.  相似文献   

3.
Lead-free ceramics (1???x)Bi0.5Na0.5TiO3xSr0.85Bi0.1TiO3 (BNT–xSBT, x?=?0.4, 0.5, 0.6 and 0.7) were prepared by a solid-state reaction process. Coexistence of ferroelectric relaxation at low temperature and Maxwell–Wagner dielectric relaxation at high temperature was revealed for the first time in this system. Meanwhile, hysteresis-free PE loops combined with a very high piezoelectric strain coefficient (d33) of 1658 pC/N concurrently with large electrostrictive coefficient Q?=?0.287 m4C?2 were achieved. The ferroelectric relaxor behavior and large electrostrictive strain might be linked to easy reorientation and reversal of ergodic PNRs and the combined effect of Bi off-center position and lone pair electrons.  相似文献   

4.
The aim of this research work is to represent the comparative study of ZnO/TiO2/ZnO (ZTZ) and TiO2/ZnO/TiO2 (TZT) thin films deposited by sol–gel dip coating on FTO substrates. After deposition, the films were annealed at 500 °C for 1 h. Structural, surface morphology, optical and electrical properties of these films were studied by X-ray diffractrometer (XRD), Raman spectra, atomic force microscope (AFM), photoluminescence spectra (PL) and four point probe technique respectively. XRD and Raman spectra confirmed the anatase, brookite phases of TiO2 and cubic phase of ZnO. AFM confirmed the formation of nano particles with average sizes of 18.4 and 47.2 nm of TZT and ZTZ films respectively. According to PL spectra, both the multilayer films slowdown the electron hole recombination rate and enhances the optoelectronic properties of the materials. Also it showed the peaks in the visible region of spectrum. The four point probe results showed that the average sheet resistivity of the films is 450 and 120 (ohm-m) respectively.  相似文献   

5.
New lead-free ceramics (1–x)NaNbO3–xBi0.5K0.5TiO3 have been fabricated by the conventional ceramic sintering technique, and their ferroelectric and piezoelectric properties have been studied. The results of X-ray diffraction reveal that Bi0.5K0.5TiO3 diffuses into the NaNbO3 lattices to form a new perovskite-type solid solution with orthorhombic symmetry. The addition of a small amount of Bi0.5K0.5TiO3 (x ≥ 0.025) transforms the ceramics from antiferroelectric to ferroelectric. The ceramic with x = 0.10 possesses the largest remanent polarization P r and thus exhibits the optimum piezoelectric properties, giving d 33 = 71 pC/N, k p = 16.6% and k t = 39.7%. The ceramics with low doping level of Bi0.5K0.5TiO3 are normal ferroelectrics and the ferroelectric-paraelectric phase transition becomes diffusive gradually with the doping level x of Bi0.5K0.5TiO3 increasing. Our results show the (1–x)NaNbO3–xBi0.5K0.5TiO3 ceramics is one of the good candidates for lead-free piezoelectric and ferroelectric materials.  相似文献   

6.
(1 − x)BaTiO3x(Bi0.5Na0.5)TiO3 (x ranged from 0.01 to 0.96) ceramics were fabricated by the conventional ceramic technique. The crystal structure, as well as dielectric and piezoelectric properties of the ceramics were studied. All the ceramics formed single-phase solid solutions with perovskite structure after sintering in air at 1150–1250 °C for 2–4 h. The crystal structure and microstructure varied gradually with the increase of (Bi0.5Na0.5)TiO3 (BNT) content. The Curie temperature, T c, shifted monotonously to high temperature as BNT increased. The ceramics with 20–90 mol% BNT had relatively low and stable dielectric loss characteristics. The piezoelectric constant, d 33, enhanced with the increase of BNT content through a maximum value in a composition of 93 mol% BNT and then tended to decrease. The maximum value, 148 pC/N, of piezoelectric constant d 33 together with the electromechanical coupling factors, k t, 19.8% and k p, 15.8%, were obtained when BNT was 93 mol%.  相似文献   

7.
Lead-free piezoelectric ceramics (1 − x)Bi0.5Na0.5TiO3xBaNb2O6 (BNT–BN100x), a new member of the BNT-based group, was prepared by conventional solid state reaction. X-ray diffraction showed that BaNb2O6 (BN) diffused into the lattice of Bi0.5Na0.5TiO3 to form a solid solution with perovskite-type structure. The temperature dependence of dielectric constant εr revealed that the solid solution underwent two phase transitions from ferroelectric to anti-ferroelectric and anti-ferroelectric to paraelectric. Both the transition temperature T d and T m were shifted to lower with the increasing content of BaNb2O6. The temperature dependence of dielectric constant at different frequency revealed that the solid solution exhibited obviously dielectric relaxation characteristics. The sample with x = 0.6 mol% exhibited excellent electrical properties, piezoelectric constant d 33 = 94 pC/N; electromechanical coupling factor k p = 0.185. The results showed that BNT–BN100x ceramics were good candidates for use as lead-free piezoelectric ceramics.  相似文献   

8.
The activities in NO + CO reaction of CuO-loaded TiO2/γ-Al2O3 catalysts prepared by precipitation (P), co-precipitation (C-P), or sol-gel (S-G) were examined using a micro-reactor-gas chromatography (GC) system. The study showed higher catalytic activity of 12%CuO/15%TiO2/γ-Al2O3 (P) than that of 12%CuO/15%TiO2/γ-Al2O3 (S-G) or 12%CuO/15%TiO2/γ-Al2O3 (C-P) in air condition, compared with higher activity of 12%CuO/15%TiO2/γ-Al2O3 (P) or 12%CuO/15%TiO2/γ-Al2O3 (S-G) than that of 12%CuO/15%TiO2/γ-Al2O3 (C-P) in H2 condition. The specific surface area and crystallite formation had little effect on catalytic activities. H2-temperature programmed reduction (TPR) revealed four reduction peaks of 12%CuO/15%TiO2/γ-Al2O3 (P), three reduction peaks of 12%CuO/15%TiO2/γ-Al2O3 (S-G), but only one reduction peak of 12%CuO/15%TiO2/γ-Al2O3 (C-P). CuO diffraction peaks were detected only in 12%CuO/15%TiO2/γ-Al2O3 (P), indicating that CuO was highly dispersed on the other two TiO2/γ-Al2O3 catalysts. As a result, 12%CuO/15%TiO2/γ-Al2O3 (P) had the highest activity of reducing NO. During NO + CO reaction, the absorption peaks of intermediate product N2O were shown at 150 °C by 12%CuO/15%TiO2/γ-Al2O3 (P), at 200 °C by 12%CuO/15%TiO2/γ-Al2O3 (S-G), and at 100 °C by 12%CuO/15%TiO2/γ-Al2O3 (C-P) after H2 pretreatment at 400 °C for 1 h.  相似文献   

9.
Crystallization and microstructure of glasses with the molar compositions 1MgO·1.2Al2O3·2.8SiO2·1.2TiO2·xLa2O3 (x = 0.1 and 0.4) were thermally treated at different temperatures in the range from 950 to 1250 °C and then analyzed by X-ray diffraction and scanning electron microscopy, in combination with energy-dispersive X-ray spectroscopy and electron backscatter diffraction. It was found that the microstructure is first homogeneous with the precipitation of randomly distributed crystals and then indialite domains with embedded perrierite and rutile crystals are formed. For higher temperatures or prolonged times, more domains appear and expand into the bulk of the sample. Finally, the entire sample consists of the indialite domains and the boundaries that are enriched in rutile, perrierite, and magnesium aluminotitanate. Nevertheless, very distinct differences are observed between the samples with different La2O3 concentrations. For the sample with x = 0.4, the domains were detected at lower temperatures, while the quantity and size of the domains increase faster due to the promoted precipitation of indialite. For the sample with x = 0.1, in addition to the domain boundaries, secondary boundaries between the “regions” (assemblages of the domains) are observed in a larger length scale. The average size of the crystalline phases found between the “regions” is larger than that typically observed at the domain boundaries. The sizes of the crystals at the boundaries decrease with higher concentrations of La2O3, and the crystals (especially perrierite) within the domains become larger, resulting in a more homogeneous microstructure. This results in better dielectric properties, i.e., much higher quality factor for the sample with x = 0.4 in comparison to that with x = 0.1 after heat-treatment at 1150 or 1250 °C.  相似文献   

10.
In this study, NaNO3, Bi(NO3)3·5H2O, Ba(NO3)2, Ti(OC4H9)4 and citric acid were successfully introduced to fabricate lead-free piezoelectric (Na0.5Bi0.5)0.94Ba0.06TiO3 [NBBT] nanopartical powders by a novel modified sol–gel auto-combustion method. The resultant products were characterized by the X-ray diffraction analysis and transmission electron microscope method. (Na0.5Bi0.5)0.94Ba0.06TiO3 + Mn(NO3)2 [NBBTM] can be sintered by the traditional solid-state reaction, and the effects of NBBT doped different amounts of Mn(NO3)2 at various sintering temperatures upon phase formation, microstructure as well as piezoelectric properties were further studied. The experimental results show that it was helpful to control their chemical ingredients and microstructure to prepare nanocrystalline single phase NBBT powders. Where is the X-ray diffraction result of the corresponding ceramics to prove the existence of the mixing between rhombohedral and tetragonal phases at the MPB compositions. Doping 0.015 mol% Mn(NO3)2 into NBBT at 1,090 °C, piezoelectric constant (d 33) and relative dielectric constant (εr) reach the superior value of 159pC/N and 1,304, respectively, and dielectric loss (tan δ) and electromechanical coupling factor (K t) are 2.5% and 65%, respectively.  相似文献   

11.
A homogeneous α-Al2O3 crystal membrane was fabricated by the sol–gel technique on 316L porous stainless steel (PSS) substrate with an average pore size of 1.0 μm. The preparation process was optimized by carefully choosing the binder, the concentrations of the casting solutions and the sintering temperatures of the membranes. Compared to methylcellulose and polyethylene glycol 20000, polyvinyl alcohol 1750 was found to be the most effective binder to fabricate a homogeneously structured Al2O3 membrane without defects. The concentration to prepare an uniform coverage membrane with a thickness of ~10 μm was 0.032 mol/L. When sintered at 1000 °C, γ-Al2O3 membrane with ~3 μm grains was obtained. When sintered at 1200 °C, γ-Al2O3 completely transformed into α-Al2O3 and the grains grew to ~5 μm. Accordingly, the process was applied to a bigger pore-sized PSS with an average pore size of 1.5 μm to fabricate an α-Al2O3 intermediate layer to initially modify its surface. A single α-Al2O3 crystal layer with a thickness of ~5 μm and an average pore size of 0.7 μm was achieved. Subsequently, TiO2, SiO2, and TiO2–SiO2 hybrid membranes were tried on the modified PSS. Defect-free microfiltration membranes with average pore sizes of ~0.3 μm were readily fabricated. The results indicate that the sol–gel method is promising to initially modify the PSS substrates and the sol–gel-derived α-Al2O3 crystal layer is an appropriate intermediate layer to modify the PSS and to support smaller grain-sized top membranes.  相似文献   

12.
xSr0.7Ce0.2TiO3–(1???x)Sr(Mg1/3Nb2/3)O3 ceramics, referred to xSCT–(1???x)SMN, were successfully produced by conventional solid-state sintered technology. The compounds, belonging to perovskites with a secondary phase of CeO2, can be detected even with x down to 0.1 of SCT composition. The overall trend for grain growth illustrates the increase with increasing SCT doping level. The Raman peak at 825 cm?1 splits into two peaks and causes red shift phenomenon. XPS spectra indicate that Ti and Nb ions exist respectively in tetravalence and pentavalence, and Ce ions exist in trivalence and tetravalence. Dielectrics constant (ε r ) of SCT–SMN ceramics gradually increases with increasing theoretical dielectric polarizabilities. A wider width of the 825 cm?1 for FWHM of A1g mode Raman peaks suggests to a lower Q?×?f value. The increasing tolerance factor in agreement with temperature coefficient of resonant frequency (τ f ), denotes that the rise of perovskite symmetry. The 0.1SCT–0.9SMN ceramic sintered at 1450?°C for 4 h illustrates excellent microwave dielectric properties with ε r ?~?35.4, Q?×?f?~?11282 GHz and τ f ?~?1.7 ppm/°C. Activation energies of 0.1SCT–0.9SMN ceramic at 100, 300 and 500 V, are ~0.436, 0.427 and 0.331 eV, respectively, indicative of a decreased trend with external electric field.  相似文献   

13.
Electrophoretic deposition (EPD) process has certain advantages such as it can be applied for a mass production and also can be combined with magnetic crystal alignment technique. In this work, we prepared lead-free 85(Bi0.5Na0.5)TiO3–15BaTiO3 (85BNT–15BT) piezoelectric ceramics by conventional uniaxial pressing and EPD process. Various conditions were optimized such as suspension media, applied electrical field, and deposition time in order to yield dense green ceramics of 85BNT–15BT composition using EPD process. 85BNT–15BT ceramics prepared using EPD process revealed the Curie temperature of about 250 °C, coercive field of about 30 kV/cm, and piezoelectric constant (d 33) of 75 pC/N. The EPD-processed samples exhibited structural and electrical properties similar to that of the conventionally processed one suggesting the successful fabrication of 85BNT–15BT piezoelectric ceramics by EPD method without composition deviation. This study lays a foundation on the fabrication of Bi-based lead-free piezoelectric ceramics by an alternative route other than the conventionally practiced solid-state reaction method maintaining the similar chemical composition, moreover, leaving a large space to explore more in the future.  相似文献   

14.
In a recent report, the evaluation of the phase relations in the Bi2O3–TiO2–WO3 ternary system has shown the existence of a new phase with nominal composition close to Bi6Ti5WO22. In the present contribution we attempt to prepare this single phase by using a solid state route. Although XRD analyses also show traces of two minority Aurivillius-type phases in the synthesized materials, the crystal structure of the Bi6Ti5WO22 phase has been determined by Rietveld analyses revealing a complex structure similar to that of Bi3(AlSb2)O11 and PbHoAl3O8 related compounds. The electrical response of this new phase was characterized as well. Three peaks are observed in its dielectric response: two of them positioned around 0 °C and can be assigned to this Bi6Ti5WO22 structure. The third one rises up to 665 °C and confirms the presence of the Aurivillius-type phases.  相似文献   

15.
High-damping materials are widely used in engineering fields. In order to increase the precision of vibration control to different levels, high-damping materials with high-rigidity are required. This study attempts to develop a new high-damping high-rigidity material using ductile ceramics based on the Al2TiO5–MgTi2O5 system, which has many continuous microcracks along the grain boundaries. Ductile ceramics have high internal friction (Q −1 = 0.01–0.037), but very low rigidity (<10 GPa). The rigidity of Al2TiO5–MgTi2O5 ceramics was improved by combining them with a polymer such as acrylic resin. The Young’s modulus and internal friction of the composites of Al2TiO5–MgTi2O5 ceramics and acrylic resin are investigated. They show high-damping capacity (Q −1 = 0.03–0.04) with high rigidity (E = 50–60 GPa), and their properties depend on those of the polymer. Thus, the composites fabricated using the above method can serve as high-damping high-rigidity materials.  相似文献   

16.
The influences of Bi substitution on microwave dielectric properties of Ba4(La0.5Sm0.5)9.33Ti18O54 solid solutions were investigated. Dielectric ceramics with general formula Ba4(La(0.5−z)Sm0.5Bi z )9.33Ti18O54, z = 0.0–0.2 were prepared by conventional solid state route. The structural analysis of all the samples was carried out by X-ray diffraction and scanning electron microscopy. The dielectric properties were investigated as a function of Bi contents using open-ended coaxial probe method in the frequency range 0.3–3.0 GHz at room temperature. Dielectric constant varies from 83 to 88 and loss tangent from 2.1 × 10−3 to 5.5 × 10−3 at 3 GHz with temperature coefficient of resonant frequency changing from 106.7 to −8.4 ppm/oC as Bi contents increases from z = 0.00–0.20. It has been found that dielectric constant and temperature coefficient of resonant frequency improve whereas loss tangent is adversely affected with increase in Bi substitution.  相似文献   

17.
The (1−x)Bi0·5(Na0·82K0·18)0·5TiO3−x LiSbO3 (x = 0−0·03) lead-free piezoelectric ceramics were fabricated by a conventional solid-state reaction method and the effect of LiSbO3 addition on microstructure and electrical properties of the ceramics was investigated. The results of XRD measurement show that Li+ and Sb5+ diffuse into the Bi0·5(Na0·82K0·18)0·5TiO3 lattices to form a solid solution with a pure perovskite structure. The LiSbO3 addition has no remarkable effect on the crystal structure. However, a significant change in grain size took place. Simultaneously, with increasing amount of LiSbO3, the temperature for a antiferroelectric to paraelectric phase transition clearly increases. The piezoelectric constant d 33 and the electromechanical coupling factor k p show an obvious improvement by adding small amount of LiSbO3, which shows optimum values of d 33 = 175 pC/N and k p = 0·36 at x = 0·01.  相似文献   

18.
The (100) oriented and random oriented 0.755Bi0.5Na0.5TiO3–0.065BaTiO3–0.18SrTiO3 (BNT–BT–ST) thin films were deposited on LaNiO3 (LNO) buffered Pt(111)/Ti/SiO2/Si substrates by the sol–gel processing technique. The orientation is controlled by the concentration of solution. The structure, dielectric and piezoelectric properties of the thin films are significantly affected by the crystallographic orientation. The (100) oriented BNT–BT–ST thin film has improved dielectric and piezoelectric properties. For the (100) oriented and random oriented BNT–BT–ST thin films, the dielectric constants are 660 and 550, the dielectric losses are 0.045 and 0.076 and the effective piezoelectric coefficients are 140 and 110 pm/V, respectively. The large piezoelectric response is attributed to the uniform microstructure and increased lattice distortion along (100) direction.  相似文献   

19.
Dense lead-free binary system piezoelectric ceramics (1 − x)[Bi0.5(Na0.7K0.25Li0.05)0.5]TiO3xBa(Ti0.95Zr0.05)O3 (BNKLT–BZT) were prepared by a two-step sintering process. A phase transition from rhombohedral to tetragonal was observed with increasing BZT fraction in the range x = 0.06–0.1 and the morphotropic phase boundary (MPB) between rhombohedral and tetragonal appears in this range. Ceramics containing 10 mol% BZT with tetragonal phase near the MPB region has the maximum piezoelectric constant d 33(151pC/N).  相似文献   

20.
A novel low loss dielectric material Ca4La2Ti5O17 was prepared by solid state ceramic route. The structure and microstructure of the Ca4La2Ti5O17 ceramics was investigated using XRD, SEM and EDX techniques. XRD result showed cubic perovskite like structure for Ca4La2Ti5O17 ceramics. The ceramics were sintered in the temperature range of 1,450–1575 °C. The microwave dielectric properties of the material were investigated using a network analyzer in the frequency range of 3–6 GHz. The variation in microwave dielectric properties of the Ca4La2Ti5O17 ceramics with sintering temperature was correlated with bulk density of the material. Ca4La2Ti5O17 has εr of 73, Quxf of 16,000 at 3.3 GHz, and τf of 127 ppm/°C at the optimized sintering temperature of 1,550 °C/4h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号