首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
应用热压缩、固溶淬火和真空退火热处理研究了未置氢和置氢0.18wt.%Ti6Al4V合金不同的工艺条件下的微观组织演变,并且通过硬度测试分析了微观组织和机械性能之间的关系.结果表明:置氢降低了Ti6Al4V合金的热变形抗力,促进了固溶淬火过程中马氏体转变的发生,使得真空退火得到的双态组织更加细小.对于未置氢和置氢的Ti6Al4V合金来说,合理的工艺顺序均应该是:热变形,固溶淬火和真空退火,并且最终都能得到双态组织.  相似文献   

2.
Thermal oxidation (TO) of Ti6Al4V alloy was performed at 500, 650 and 800 °C for 8, 16, 24 and 48 h in air. The morphological features, structural characteristics, microhardness and corrosion resistance in Ringer's solution of TO Ti6Al4V alloy were evaluated and compared with those of the untreated one. The surface morphological features reveal that the oxide film formed on Ti6Al4V alloy is adherent to the substrate at 500 and 650 °C irrespective of the oxidation time whereas it spalls off when the alloy is oxidized at 800 °C for more than 8 h. X-ray diffraction (XRD) measurement reveals the presence of Ti(O) and α-Ti phases on alloy oxidized at 500 and 650 °C, with Ti(O) as the dominant phase at 650 °C whereas the alloy oxidized at 800 °C exhibits only the rutile phase. Almost a threefold increase in hardness is observed for the alloy oxidized at 650 °C for 48 h when compared to that of the untreated one. Thermally oxidized Ti6Al4V alloy offers excellent corrosion resistance in Ringer's solution when compared to that of the untreated alloy.  相似文献   

3.
The present work shows that the effect of several heat treatments on the corrosion resistance and mechanical properties of Ti6Al4V processed by selective laser melting (SLM). The microstructure of Ti6Al4V alloy produced by selective laser melting exhibited bulky prior β columnar grains, and a large amount of fine acicular martensites α′ were observed inside the prior β columnar grains. The acicular martensitic α′ were transformed to a mixture of α and β after heat treatment, and the grain size increases with the increase of heat-treated temperature. The results of 3.5 wt% NaCl solution electrochemical corrosion test showed that the heat-treated samples possess a higher corrosion resistance than the as-received sample. Among of them, the sample after heat-treated at 730 °C exhibited best corrosion resistance and excellent fracture strain. The sample heat treated at 1015 °C showed worst mechanical properties due to the formation of Widmanstätten structure.  相似文献   

4.
This paper investigates the effect of post-deposition heat treatment on porosity, microstructure, and mechanical properties of Ti–6Al–4V produced via an Electron Beam Melting process. Samples were studied in the conditions of as-built and heat treated at 920°C and 1030°C. The as-built samples were characterised by columnar β grains consists of α+β microstructure with Widmanstätten and colony morphologies were found. Heat treatment resulted in increased α lath width. The yield strength and ultimate tensile strength was greater in the as-built condition than wrought material. Porosity re-growth occurred after heat treatment but it did not affect the tensile properties. Greater ductility after heat treatment was attributed to the larger α lath width which increases effective slip length.  相似文献   

5.
A series of quaternary (Ti, Al, V) N coating layers were obtained by low temperature reactive plasma sputtering in differing deposition conditions to improve the wear resistance and the biocompatibility of a titanium surgical alloy, specifically Ti-6Al-4V. Characterization of the mechanical properties, structure and the chemical composition of the coating layer was explored by microhardness test, ball against flat wear test, scanning electron microscopy and X-ray diffraction. The biocompatibility of the optimum coating layer (as determined by mechanical performance) was examined by a modified MTT toxicity test and by monitoring cell growth assessed by quantitative stereological analysis. The experimental results are encouraging, indicating that this low temperature deposited, dense, quaternary (Ti, Al, V) N coating layer exhibits improved mechanical properties such as high hardness and excellent adhesion to a Ti alloy substrate and is highly biocompatible.  相似文献   

6.
In this study, we investigated the effect of post weld annealing treatments on the mechanical properties of a Ti–6Al–4V alloy following electron beam welding (EBW). The operational parameters used in this EBW process together with suitable annealing treatments appeared to substantially enhance the tensile properties of the Ti–6Al–4V weldment, suggesting that EBW is a promising method for industrial application. Moreover, we report for the first time that γ-TiAl + α2-Ti3Al formed in the fusion zone of the Ti–6Al–4V EBW weldment and exhibited the same lamellar structure, orientation relationship, deformation mechanism, and slip system as common Ti–Al-based alloys do. The presence of these intermetallic compounds affected the mechanical properties of the weldment. We discuss the related phase transformation, microstructural evolution, and characteristics of the precipitates formed.  相似文献   

7.
为提高Ti6Al4V合金的高温摩擦学性能,采用激光熔覆技术在其表面原位合成多相混杂金属基高温自润滑耐磨复合涂层,熔覆粉末的成分为Ni60-16.8%TiC-23.2%WS_2(质量分数,下同),系统地研究复合涂层的显微组织、物相结构及其在20,300,600,800℃下的摩擦学性能和相关磨损机理。结果表明:复合涂层的显微硬度(701.88HV0.5)约为基体(350 HV0.5)的2倍;由于原位合成固体润滑相(Ti_2SC/TiS/NiS/TiO/TiO_2/NiCr_2O_4/Cr_2O_3)和硬质相(W,Ti)C1-x/TiC/Cr_7C_3的协同作用,复合涂层的耐磨减摩性能明显优于基体。随着温度升高,涂层和基体的摩擦因数和磨损率均呈下降趋势,在800℃时复合涂层和基体的摩擦因数分别为0.32和0.43,磨损率分别为1.80×10-4,2.92×10-5mm/Nm。在800℃下塑性变形、分层和氧化磨损为基体主要磨损机理,复合涂层以氧化磨损和轻微的黏着磨损为主。  相似文献   

8.
置氢Ti6Al4V合金的微观组织演变规律   总被引:2,自引:0,他引:2  
为研究置氢Ti6Al4V合金的高温加工改性机理,从微观组织的角度对合金进行了对比分析.利用OM、SEM、XRD等研究了置氢对Ti6Al4V合金变形前后微观组织演变的影响.研究结果表明:氢的加入不仅使置氢Ti6Al4V合金中β相比例明显增大,而且改变了α相与β相之间的电势差,在氢含量为0.3%~0.5%两相颜色将发生互换,氢含量增加到0.50%以上时,合金中将出现面心立方结构的δ氢化物;随氢含量的增加,合金超塑拉伸变形后的组织由α+β两相等轴晶粒变为粗大的β晶粒,造成α与β界面的协调能力下降,并改变了合金的变形机制.  相似文献   

9.
Microstructural assessment of laser nitrided Ti-6Al-4V alloy   总被引:1,自引:0,他引:1  
A microstructural study of the phases developed during the laser nitriding of a Ti-6Al-4V alloy by, using a CL5 continuous CO2 laser with a spinning beam and concentration of 80% nitrogen, was undertaken. The vertical sections, perpendicular to the melt track were examined by optical microscopy and scanning electron microscopy (SEM), while specimens for X-ray diffractometry (XRD), X-ray photospectroscopy (XPS) and transmission electron microscopy/selected area electron diffraction (TEM/SAED), were taken parallel to the melt track. In this way the variation in microstructure as a function of depth from the laser treated surface, was studied. This supplemented XRD and XPS investigations undertaken previously. Two zones were identified. Zone 1, within 50 m of the surface, contained well defined dendrites of fcc TiN0.8, plus hcp TiN0.3 and hcp Ti. Zone 2, below 50 m, consisted of needles of hcp Ti. From a consideration of the hardness profiles in Zone 2, it is suggested that at the top of the zone, the phase is, in fact, a solid solution containing 3–4% N, which decreased to <1% N at the bottom of the zone. The TEM/SAED study permitted the three phases fcc TiN0.8, hcp TiN0.3 and hcp Ti to be identified through a combination of morphology and SAED patterns. This also showed that the fccTiN0.8 contained fringes, which were considered to be stacking fault fringes and allowed this phase to be readily recognized in the TEM. The presence of stacking faults may be associated with the high nitrogen concentration of 80% used for the laser nitriding in this work.  相似文献   

10.
This study represents an exploratory characterization and comparison of electron-beam melted (EBM) or rapid manufacturing (RM) of Ti–6Al–4V components (from nominal 30 μm diameter powder) with wrought products. Acicular α and associated β microstructures observed by optical metallography and electron microscopy (SEM and TEM) are compared along with corresponding tensile test and hardness data; including the initial powder particles where the Vickers microindentation hardness averaged 5.0 GPa in comparison with the fully dense, EB manufactured product with an average microindentation hardness ranging from 3.6 to 3.9 GPa. This compared with wrought products where the Vickers microindentation hardness averaged 4.0 GPa. Values of UTS for the EBM samples averaged 1.18 GPa for elongations ranging from 16 to 25%. Biomaterials/biomedical applications of EBM prototypes in direct prosthesis or implant manufacturing from CT or MRI data are discussed in the context of this work, especially prospects for tailoring physical properties through EB control to achieve customized and optimized implant and prosthetic products direct from CT-scans.  相似文献   

11.
Electron beam selective melting technology was utilized to fabricate Ti6Al4V parts from pre-alloyed powders. Square samples of different heights were fabricated with varied fabrication parameters to understand the effect of energy input on the structures and properties. The macrostructures and microstructures were characterized by optical microscopy, scanning electron microscopy, and X-ray diffraction. The mechanical properties including microhardness and ultimate tensile strength (UTS) were investigated. The Widmanstatten structure in the top region has a slightly lower UTS but a higher microhardness than the bottom basket-weave microstructure, and the UTS in vertical orientation was lower than the horizontal orientation, which was thought to be caused by lack-of-fusion porosity defects.  相似文献   

12.
The use of porous structures is gaining popularity in biomedical implant manufacture fields due to its ability to promote increased osseointegration and cell proliferation. Selective laser melting (SLM) is a metal additive manufacturing (MAM) technique capable of producing the porous structure. Adjusting the parameter of scan line spacing is a simple and fast way to gain porous structures in SLM process. By using the medical alloy of Ti6Al4V, we systematically study the influence of the scan line spacing on pore characteristics and mechanical properties of porous implant for the first time. The scanning electron microscope (SEM) results show that the porous Ti6Al4V implants with interconnected pore sizes which ranges from 250 to 450 μm is appropriate for compact bone. The compression strength and modulus of the porous Ti6Al4V implants decrease with the increase of the scan line spacing, and two equations by fitting the data have been established to predict their compression properties. The compressive deformation of the porous Ti6Al4V implants presented an adiabatic shear band (ASB) fracture, which is similar to dense Ti6Al4V owing to the dense thin wall structures. The ability to create both high porosity and strong mechanical properties implants opens a new avenue for fabricating porous implants which is used for load-bearing bone defect repair and regeneration.  相似文献   

13.
Abstract

The isothermal oxidation behaviour of two phase (α + β) titanium base alloy Ti6Al4V (coupons) has been studied at 1050, 1150, 1250, and 1340 K in O2 gas at atmospheric pressure for 2, 4, 6, 8, and 12 h. Investigations on kinetic behaviour followed by the metallographic examination of oxidised scale morphology was carried out. Thermogravimetric data (weight gain v time) exhibited parabolic behaviour. Below 1250 K, the rate of oxidation substantially decreased after 8 h exposure, however, at 1340 K the oxidation rate was markedly high over the whole 12 h period. Parabolic rate constants were 0.234×10-7, 3.67×10-7, 10.72×10 -7, and 31.17×10-7 kg2 m-4 s-1 at 1050, 1150, 1250, and 1340 K respectively. The effective activation energy of oxidation was 88 kJ mol-1. The instantaneous rate constant k i exhibited a marked deviation from parabolic behaviour at high temperatures e.g. 1150, 1250, and 1340 K, however, k i at lower temperature (1050 K) remained broadly unchanged with time exhibiting no deviation from parabolic behaviour. Metallographic observation of the sample coupons treated at 1340 K revealed an identical oxide scale morphology with increased thickness over the time.  相似文献   

14.
The properties of passivated films for Ti6Al4V alloy prepared by various methods (as-polished, brazed at 970 °C for 2 h and brazed at 970 °C for 8 h) were investigated. Four passivations (non-treated, nitric acid passivation, 400 °C-treated in air, and aged in boiling water), with or without autoclaving treatments, were adopted for evaluating the changes of surface properties, including chemical composition, chemical structure, and oxide thickness. From X-ray photoelectron spectroscopic (XPS) analyses, surface elements of copper and nickel in brazed samples were undetected for non-treated, acid-passivated and boiling water-aged specimens, while they were found in the 400 °C-treated specimen. The relative contents of Ti2++Ti3+ to Ti4+ were determined by passivation treatments, but were not related to the experimental materials and autoclaving treatment. Passivation and autoclaving decreased the Ti to Ti4+ ratio by virtue of an increase in oxide thickness. Of the four types of passivation treatment, the 400 °C thermal treatment exhibited the lowest content of suboxides and metallic elements and the thickest oxide by XPS analysis; however, this treatment may cause a desorption of the basic OH group in the hydration layer on the surface of titanium alloy.  相似文献   

15.
Compression tests were performed at room temperature to investigate the effects of hydrogenation temperature on compressive properties of Ti6Al4V alloy treated by continuous multistep hydrogenation treatment (CMHT).Pressure-composition isotherms and microstructures were also studied.Results showed that the equilibrium hydrogen pressure increased,and the hydrogen absorption rate decreased with the increase of hydrogenation temperature.The amounts of β phase and α'martensite increased first and then decreased when Ti6Al4V alloy was treated by four times CMHT with the increase of hydrogenation temperature.Hydrogenation temperature played a different role on the compressive properties of CMHT-treated Ti6Al4V alloy.The ultimate compression of Ti6Al4V alloy treated by 11 times CMHT at 850 ℃ increased by 83.3 % as compared to the as-received Ti6Al4V alloy.The compressive properties of Ti6Al4V alloy were dependent on the amounts of different phases and microstructures when Ti6Al4V alloy was treated by CMHT at different temperatures.  相似文献   

16.
Laser processed Ti6Al4V alloy samples with total porosities of 0%, 10% and 20% have been subjected to torsional loading to determine mechanical properties and to understand the deformation behavior. The torsional yield strength and modulus of porous Ti alloy samples was found to be in the range of 185-332 MPa and 5.7-11 GPa, respectively. With an increase in the porosity both the strength and the modulus decreased, and at 20% porosity the torsional modulus of Ti6Al4V alloy was found to be very close to that of human cortical bone. Further, the experiments revealed clear strain hardening and ductile deformation in all the samples, which suggests that the inherent brittleness associated solid-state sintered porous materials can be completely eliminated via laser processing for load bearing metal implant applications.  相似文献   

17.
Samples of Ti6Al4V alloy were ceramic conversion (CC) treated. The fatigue properties of untreated and CC treated samples were evaluated with a conventional Wöhler cantilever rotating-bending fatigue machine under both plain fatigue and fretting fatigue conditions. Experiment results showed that CC treatment had a detrimental effect on plain fatigue properties and reduced the plain fatigue limit of the investigated Ti6Al4V alloy by about 24%. However, the fatigue property loss could be fully recovered by an additional shot peening after CC treatment. More importantly, shot peening after CC treatment resulted in considerably longer fatigue life over untreated and CC treated materials in the finite-life region. In contrast to its detrimental effect on plain fatigue, CC treatment appeared to be beneficial to fretting fatigue property. It increased fretting fatigue strength (FFS at 107 cycles) of the Ti6Al4V alloy by approximately 10%. Shot peening after CC treatment further enhanced the fretting fatigue properties, with an improvement in FFS (107 cycles) of about 20% over the untreated material under the present treatment and testing conditions.  相似文献   

18.
The effect of porosity––a common welding defect––on the fatigue crack growth rate (FCGR) in Ti–6Al–4V laser welds was investigated. The experimental results reveal that porosity was present in partial penetration welds over a narrow fusion zone (FZ) with martensite structure. The FCGR of the FZ was lower than that of the base plate. The fracture surface morphology of weld metal was much rougher as compared to that of the base plate. Randomly oriented martensite in the FZ led to local cleavage fracture along a preferred plane, thus, altering the crack growth direction significantly out of the primary crack plane. The zigzag crack path in the FZ resulted in a reduced FCGR at a given ΔK compared to the base plate. Besides, the porous weld showed a serration on the crack growth curve, and behaved the similar crack growth characteristics as the defect free one. SEM fractography revealed that the deflection of crack path around porosity together with local notch blunting as the crack tip pierced into porosity, balanced the increased FCGR for the occurrence of instant crack advance as the crack front reached the porosity at a low stress ratio. In contrast, the serration and drop in FCGR occurred sparingly at a high stress ratio as the crack front met the porosity.  相似文献   

19.
This paper presents a multiscale study of the quasi-static behaviour of a Ti6Al4V titanium alloy sheet. Tensile and compressive tests were carried out on specimens along several orientations from the rolling direction in order to characterise the material anisotropy. In parallel, X-Ray diffraction texture measurements were performed before and after deformation in tension. A phenomenological model (CPB06exn) and a multiscale crystal plasticity model (Multisite) were investigated to describe the mechanical behaviour of the tested material. The identification of the material parameters provides good predictions of the plastic anisotropy using both tensile and compressive data. The crystal plasticity model is in good agreement with the experiments in tension but it was observed that some improvements should be done to take into account the tension-compression asymmetry displayed by the material. Moreover both models lead to a good prediction of the Lankford’s coefficients and yield strength.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号