首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
Single crystals of gadolinium–sodium polyphosphate NaGd(PO3)4 were grown for the first time using a flux method and characterized by X-ray diffraction. This phosphate crystallizes in a monoclinic system with P21/n space group and with the following unit-cell dimensions: a = 9.767(3) Å, b = 13.017(1) Å, c = 7.160(2) Å, β = 90.564(5)°, V = 910.3(4) Å3 and Z = 4. The crystal structure was solved from 3451 X-ray independent reflections with final R(F2) = 0.0219 and Rw(F2) = 0.056 refined with 164 parameters (). The atomic arrangement can be described as a long chain polyphosphate organization. Two infinite (PO3)∝ chains with a period of eight tetrahedra run along the [0 1 1] direction. The structure of NaGd(PO3)4 consists of GdO8 polyhedra sharing oxygen atoms with phosphoric group PO4. Each Na+ ion is bonded to eight oxygen atoms.  相似文献   

2.
The (C3H12N2)0.94[Mn1.50Fe1.50III(AsO4)F6] and (C3H12N2)0.75[Co1.50Fe1.50III(AsO4)F6] compounds 1 and 2 have been synthesized using mild hydrothermal conditions. These phases are isostructural with (C3H12N2)0.75[Fe1.5IIFe1.5III(AsO4)F6]. The compounds crystallize in the orthorhombic Imam space group. The unit cell parameters calculated by using the patterns matching routine of the FULPROOF program, starting from the cell parameters of the iron(II),(III) phase, are: a = 7.727(1) Å, b = 11.047(1) Å, c = 13.412(1) Å for 1 and a = 7.560(1) Å, b = 11.012(1) Å, c = 13.206(1) Å for 2, being Z = 8 in both compounds. The crystal structure consists of a three-dimensional framework constructed from edge-sharing [MII(1)2O2F8] (M = Mn, Co) dimeric octahedra linked to [FeIII(2)O2F4] octahedra through the F(1) anions and to the [AsO4] tetrahedra by the O(1) vertex. This network gives rise two kinds of chains, which are extended in perpendicular directions. Chain 1 is extended along the a-axis and chain 2 runs along the c-axis. These chains are linked by the F(1) and O(1) atoms and establish cavities delimited by eight or six polyhedra along the [1 0 0] and [0 0 1] directions, respectively. The propanediammonium cations are located inside these cavities. The thermal study indicates that the structures collapse with the calcination of the organic dication at 255 and 285 °C for 1 and 2, respectively. The Mössbauer spectra in the paramagnetic state indicate the existence of two crystallographically independent positions for the iron(III) cations and a small proportion of this cation in the positions of the divalent Mn(II) and Co(II) ones. The IR spectrum shows the protonated bands of the H2N- groups of the propanediamine molecule and the characteristic bands of the [AsO4]3− arsenate oxoanions. In the diffuse reflectance spectra, it can be observed the bands characteristic of trivalent iron(III) cation and divalent Mn(II) and Co(II) ones in a distorted octahedral symmetry. The calculated Dq and B-Racah parameters for the cobalt(II) phase are 710 and 925 cm−1, respectively. The ESR spectra of compound 1 maintain isotropic with variation in temperature, being g = 1.99. Magnetic measurements for both compounds indicate that the main magnetic interactions are antiferromagnetic in nature. However, at low temperatures small ferromagnetic components are detected, which are probably due to a spin decompensation of the two different metallic cations. The hysteresis loops give values of the remnant magnetization and coercive field of 84.5, 255 emu/mol and 0.01, 0.225 T for phases 1 and 2, respectively.  相似文献   

3.
KLa(PO3)4 (KLP) and LiLa(PO3)4 (LLP) doped with different concentrations of Eu3+ are grown by solid state reaction. The obtained powders are identified by X-ray diffraction, Raman and FT-IR spectroscopies. These polyphosphates KLa(PO3)4 and LiLa(PO3)4 crystallize in the monoclinic system but with different space groups respectively P21 and C2/c. The evolution of crystal lattice parameters as function of Eu3+ concentration in these host lattices was studied. Spectroscopic properties of the Eu3+-doped KLa(PO3)4 and LiLa(PO3)4 at room temperature (RT) are presented. The excitation spectra of the Eu3+ ion in condensed polyphosphates along the UV-Visible domain are registered. They show that the position of the charge transfer band (CTB) depends on the host lattices. The effect of structural characteristics of condensed polyphosphates on their optical and colorimetric properties was investigated for the first time. Colorimetric parameters of the Eu3+ ions red emission in KLP and LLP are determined and compared with other host matrices. Evolution of colorimetric properties as function of Eu3+concentration was discussed.  相似文献   

4.
The absorption and emission spectra of Mn5+ (3d2) in Sr5(PO4)3Cl are analyzed using a C4 crystal-field hamiltonian. The descent in symmetry from cubic was guided by a point-charge calculation of the crystal-field componensts. The calculated energy levels are in excellent agreement with those obtained experimentally. The resulting crystal-field parameters, Bnm, represent very well the crystal-field interactions of Mn5+ in Sr5(PO4)3Cl.  相似文献   

5.
A single-crystal X-ray diffraction analysis has been performed on LiEr(PO3)4 prepared by the flux method. The compound crystallizes in the monoclinic system with space group C2/c and cell parameters: a = 16.262(2), b = 7.032(1), c = 9.549(2) Å and β = 125.95(1)°. The crystal structure was refined based on 1272 independent reflections with I > 2σ(I). Final values of the reliability factors were improven considerably: R(F2) = 0.0180 and wR(F2) = 0.0490. The LiEr(PO3)4 structure is characterized by infinite chains (PO3)n, extending parallel to the b direction. The ErO8 dodecahedra and LiO4 tetrahedra alternate on two-fold axes in the middle of four (PO3)n chains. The vibrational study by infrared absorption spectroscopy is reported.  相似文献   

6.
Strontium chloroapatite (Sr5(PO4)3Cl) nanocrystals doped with Ni2+ ions were synthesized by a precipitation method. The obtained nanocrystals appeared to be rod-like with diameters of  50 nm and lengths of 150–350 nm by transmission electron microscopy (TEM). The photoluminescence (PL) properties of Ni2+ ions in strontium chloroapatite were studied by photoluminescence spectroscopy.  相似文献   

7.
(NH4)Zr2(PO4)3 has been prepared, hydrothermally, from α-zirconium phosphate in three different ways; (1) from amine intercalates at 300°C, (2) from mixtures of ZrOCl2·8H2O in excess (NH4)H2PO4 and (3) reaction of NH4Cl with Zr(NaPO4)2. Ammonium dizirconium triphosphate is rhombohedral with a = 8.676(1) and c = 24.288(5)A?. It decomposed on heating to HZr2(PO4)3. Below 600°C a complex, as yet unindexed, X-ray pattern was obtained. A very similar X-ray pattern was obtained by washing LiTi0.1Zr1.9(PO4)3 with 0.3N HCl. Heating this phase or NH4Zr2(PO4)3, above 600°C resulted in the appearance of a rhombohedral phase of HZr2(PO4)3 with cell dimensions a = 8.803(5) and c = 23.23(1)A?. The protons were not completely removed until about 1150°C. Decomposition of (NH4)Zr2(PO4)3 at 450°C yielded an acidic gas whereas at 700°C NH3 was evolved. A possible explanation for this behavior is presented.  相似文献   

8.
The family of titanium Nasicon-phosphates of generic formula M0.5IITi2(PO4)3 has been revisited using hydrothermal techniques. Two phases have been synthesized: Mn0.5IITi2(PO4)3 (MnTiP) and Co0.5IITi2(PO4)3 (CoTiP). Single crystal diffraction studies show that they exhibit two different structural types. Mn0.5IITi2(PO4)3 phosphate crystallizes in the R-3 space group, with the cell parameters a = 8.51300(10) Å and c = 21.0083(3) Å (V = 1318.52(3) Å3 and Z = 6). The Co0.5IITi2(PO4)3 phosphate crystallizes in the R-3c space group, with a = 8.4608(9) Å and c = 21.174(2) Å (V = 1312.7(2) Å3 and Z = 6). These two compounds are clearly related to the parent Nasicon-type rhombohedral structure, which can be described using [Ti2(PO4)3] framework composed of two [TiO6] octahedral interlinked via three [PO4] tetrahedra. 31P magic-angle spinning nuclear magnetic resonance (MAS-NMR) data are presented as supporting data. Curie-Weiss-type behavior is observed in the magnetic susceptibility. The phases are also characterized by IR spectroscopy and UV-visible.  相似文献   

9.
New compounds: Mg3Fe4(VO4)6 and Zn3Fe4(VO4)6 were obtained from a solid state reaction. The temperatures of melting of Mg3Fe4(VO4)6 and Zn3Fe4(VO4)6 amount to 950±5 and 850±5°C, respectively. The indexing results and the calculated unit cell parameters for both compounds are given and suggest that both phases are isotypic with Mn3Fe4(VO4)6. The IR spectra of the above-mentioned compounds are presented.  相似文献   

10.
A new iron(III) phosphate Na3Fe3(PO4)4 has been synthesized and characterized. It decomposes before melting at 860°C into FePO4 and Na3Fe2(PO4)3. The structure of the compound was determined by single-crystal X-ray diffraction. The unit cell is monoclinic with the following parameters: a=19.601(8) Å, b=6.387(1) Å, c=10.575(6) Å and β=91.81(4)°; Z=4; space group: C2/c. Na3Fe3(PO4)4 exhibits a layered structure involving corner-linkage between FeO6 octahedra, and corner- and edge-sharing between FeO6 octahedra and PO4 tetrahedra. The Na+ cations occupying the interlayer space are six- and seven-fold coordinated by oxygen atoms. The relationship between the structure of Na3Fe3(PO4)4 and the previous reported hydrate K3Fe3(PO4)4·H2O will be discussed.  相似文献   

11.
The dielectric constants of Pb3 (PO4)2 | Pb3 (AsO4)2 at room temperature are intrinsic and fulfill the Lyddane - Teller - Sachs relation. At higher temperatures the specific conductivity increases with an activation energy of 0.56 eV leading to Maxwell - Wagner polarization effects thereby increasing the effective dielectric constant. Corresponding peaks in ∈' (T) are extrinsic and not attributed to structural phase transformations.  相似文献   

12.
A new titanium oxyphosphate Mg0.50TiO(PO4) has been synthesized and characterized by several physical techniques: X-ray diffraction, 31P MAS-NMR, Raman diffusion, infrared absorption and diffuse reflectance spectroscopy. It crystallizes in the monoclinic system with unit cell parameters: a = 7.367(9), b = 7.385(8), c = 7.373(9) Å, β = 120.23(1), with the space group P21/c (no. 14), Z = 4. The crystal structure has been refined by the Rietveld method using X-ray powder diffraction. The conventional R indices obtained are Rwp = 0.138, Rp = 0.096 and RB = 0.0459. The structure of Mg0.50TiO(PO4) consists of infinite chains of corner-shared [TiO6] octahedra parallel to the c-axis, crosslinked by corner-shared [PO4] tetrahedra. These infinite chains have alternating short (1.74 Å) and long (2.26 Å) TiO bonds and are similar to those found in titanium oxyphosphate MII0.50TiO(PO4) (M2+ = Fe2+, Co2+, Ni2+, Cu2+, Zn2+). The magnesium atom is located in an antiprism between two [TiO6] octahedra. 31P MAS NMR showed only a single 31P resonance line, in a good agreement with the crystal structure. Raman and IR spectra show strong bands respectively at 765 and 815 cm−1, attributed to the vibration of TiOTiO bonds in the infinite chains. The gap due to the Oxygen-Titanium(IV) charge transfer is 3.37 eV.  相似文献   

13.
Single crystals of the pseudobinary system Pb3(V1?xPxO4)2 were grown via the Czochralski technique and were studied over wide ranges of x, particularly with regard to the influence of substitution on the 3?mF2m transition as a function of temperature.  相似文献   

14.
Tantalum hydrogen phosphate, β-TaH(PO4)2, has a three-dimensional structure that is stable to remarkably high temperature (∼600 °C) presumably due to the presence of strong hydrogen bonds. Impedance measurements indicate a low conductivity, 2.0 × 10−6 S/cm at 200 °C in 5% H2. In further studies aimed at enhancing the conductivity by aliovalent doping, we have investigated systematically the synthesis of compounds in the TaH(PO4)2-W2P2O11 system at 380 °C. As a result, a new phase, Ta2(WO2)0.87H0.26(PO4)4, was identified and subsequently the molybdenum analog Ta2(MoO2)(PO4)4 was also prepared. The structures were determined by single crystal X-ray diffraction techniques. The structures of Ta2(WO2)0.87H0.26(PO4)4 and Ta2(MoO2)(PO4)4 can be formally derived from the structure of β-TaH(PO4)2 by the replacement of two P-OH protons with an MO22+ (M = Mo and W) group together with a change in the orientation of some phosphate tetrahedra.  相似文献   

15.
严建华  冯乃谦  侯英新  王晓华 《功能材料》2004,35(Z1):2325-2327
利用差热分析、X射线衍射仪、液氮吸附BET孔经测试仪对组成为NaTi2(PO4)3-0.9 Ca3(PO4)2的含钛磷酸盐玻璃的析晶行为进行了研究.通过对该玻璃相继进行成核、析晶和酸浸泡处理制备了NaTi2(PO4)3骨架多孔微晶玻璃.证明该玻璃在646℃8h成核处理过程中产生了旋节分解特征的成分偏聚,形成了富TiO2玻璃相和富CaO玻璃相交错生长的连通结构,成核处理后的玻璃在738℃析晶过程中依次在富钛相和富钙相中析出NaTi2(PO4)3和β-Ca3(PO4)2.成核过程对析晶的促进作用是通过促进NaTi2(PO4)3的析出而实现的.  相似文献   

16.
The single crystals of sodium dithorium orthophosphate NaTh2(PO4)3 (NThP) were studied by means of micro/nanoindentation. The NThP hardness was found to be НN = 8.76 ± 0.18 GPa and the elastic modulus ЕN = 144 ± 1 GPa. Microhardness anisotropy of the NThP crystal unequal faces is insignificant. The non-uniformity of plastic strain observed for the NThP is caused by fracture initiation and growth in the imprint. The average fracture toughness index (KIc) for the NThP is estimated to be equal to 0.56 MPa m0.5.  相似文献   

17.
Ferroelasticity has been established in the room temperature phase of Pb3(PxV1-xO4)2, (x ≥ 0.8). The coercitive stress and the spontaneous strain have been determined and found to be 1.6 bars and ca. 3.5 · 10?4 respectively. The effect of domain switching on double refraction and Raman spectra is clearly brought out.  相似文献   

18.
The system KPO3-LaP3O9 has been studied for the first time by differential thermal analysis and X ray diffraction. The system shows two compounds KLa(PO3)4 and K2La(PO3)5 which melt in a peritectic decomposition at 880°C and 770°C respectively. An eutectic point appears at 705°C; The eutectic point corresponds to a concentration of 10% molar LaP3O9.Infra Red absorption spectra are typical of chain phosphates.The new compound K2La(PO35 is isotypic whith (NH4)2La(PO3)5 which has been synthetized for the first time. They belong to the triclinic system whith space group P1 and Z = 2. The parameters of the unit cell are: a = 7.309(4)A?b = 13.35(2)A?c = 7.155(7)A?α = 90°3(1) β = 109°17(7) γ = 89°90(4) for K2La(PO3)5 and: a = 7.174(8)A?b = 13.38(2)A?c = 7.35(2)A?α = 90°6(2) β = 107°4(1) γ = 89°82(7) for (NH4)2La(PO3)5.  相似文献   

19.
Single crystals of Pb3(PO4)2 were grown by the Czochralski technique. Transparent oriented crystal sections exhibit a pattern of ferroelastic domains which are readily movable with applied external stress. The high-temperature parent phase, β-Pb3(PO4)2, transforms to the α modification at 180°C. _This transformation corresponds to the Aizu (1) species, 3mF2/m, which supports full ferroelasticity. The predicted number of domain walls have been observed.  相似文献   

20.
Equilibrium diagram of Ba(PO3)2  CsPO3 system is given. Two compounds are identified: BaCs4(PO3)6, Ba2Cs(PO33)5  BaCsP3O9.H2O was also prepared and characterized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号