首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A Pt/ZrO2 catalyst has been investigated by temperature-programmed reduction and temperature-programmed desorption of hydrogen. Hydrogen spills over from Pt onto the ZrO2 surface at about 550°C. One part of spillover hydrogen is consumed by a partial reduction of zirconia. The other part is adsorbed on the surface and is desorbed at about 650°C. This desorption is a reversible one, i.e. it can be followed by a renewed uptake of spillover hydrogen. No connection between dehydroxylable OH groups and spillover hydrogen adsorption has been observed. The adsorption sites for the reversibly bound spillover hydrogen were possibly formed during the reducing hydrogen treatment.  相似文献   

2.
Formaldehyde(HCHO) is an important indoor pollutant.Catalytic oxidize low concentration HCHO is an effective way to eliminate indoor pollution.In this study,a series of Pt/TiO_2 catalysts are prepared by impregnation and reduced by NaBH_4.The effects of loading amount of Pt and cry stal type of TiO_2 on the physical and chemical properties and the catalytic performance in HCHO oxidation reaction are investigated.The results show that the quantity of active site and the oxygen vacancy of catalysts increa sed with increasing Pt content,which is beneficial to promote the further performance of catalysts.Nevertheless,with the further rises of Pt content,the specific surface area further decreases,and the proportion of Pt~(2+) species on the catalyst surface which is significant to catalytic properties also decreases,causing catalytic performance decreases.Compared with the catalyst supporting on rutile,the Pt/α-TiO_2 catalyst supporting on anatase has larger specific surface area,more Pt~(2+) phase and easier to form oxygen vacancy in the support,which cause better catalytic performance.The catalyst with Pt content of0.1 wt% and supported by anatase TiO_2 has the best catalytic performance.The HCHO conversion efficiency reaches 98% and 100% at 50℃ and 100 ℃, and the stabilization time is longer than 140 h.  相似文献   

3.
A Pt/TiO2 catalyst has been subjected to reduction in hydrogen at 473, 573 and 773 K and the various degrees of metal-support interaction (SMSI) confirmed by means of CO and H2 chemisorption, FTIR of CO and the hydrogenation of crotonaldehyde. Coadsorption of CO and crotonaldehyde were performed to identify the preferred adsorption site and mode of adsorption of the unsaturated aldehyde. Results which appear to suggest shifts to lower frequencies of bands due to adsorbed carbonyls are not due to electronic effects induced by coadsorption, but rather indicate displacement of CO from the weaker bonding sites which eliminate dipole coupling effects between different carbonyl clusters, and consequently removes intensity transfer phenomena leading to enhancement in intensity at lower frequencies. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

4.
Pt supported on a carbon molecular sieve (Pt/CMS) was prepared by pyrolysis of polyfurfuryl alcohol containing pre-reduced Pt particles. The catalysts were characterized by hydrogen chemisorption, XRD, N2 adsorption/desorption and TEM. Hydrogen chemisorption showed that not all the Pt particles were exposed to H2 molecules. Oxidation treatment made Pt particles more accessible to H2. Catalyst activity was evaluated by hydrogenation of 1-hexene. Hydrogen spillover was demonstrated by diluting Pt/CMS with activated carbon or hydrogen type zeolite Y. The initial conversion of 1-hexene was increased from 86.5% to 98.5% and to 100% when Pt/CMS was diluted with activated carbon and hydrogen type zeolite, respectively. The high initial conversion was sustained for 6 h in the presence of diluents while the conversion decreased quickly for Pt/CMS alone.  相似文献   

5.
采用溶胶-凝胶法和等体积浸渍法,分别对ZSM-5分子筛进行TiO2改性和Pt负载,获得了具有脱氢-裂解双功能的Pt/TiO2/ZSM-5催化剂,采用XRD、N2吸附-脱附、TEM、XPS和NH3-TPD对样品的晶体结构,孔结构、形貌、活性金属价态和酸性质等进行了表征,并研究了正丁烷在此催化剂上催化转化制备低碳烯烃的反应规律。研究结果表明,TiO2的引入,一方面使得改性后的ZSM-5分子筛获得了额外的酸性中心,特别是强酸性位含量的增加,有助于促进正丁烷的活化;另一方面Pt与TiO2之间存在“金属-载体”强相互作用(SMSI),在H2还原气氛下,Pt能够促进TiO2的还原,生成Ti3+物种,而Ti3+的存在增加了Pt周围的电荷密度,降低了Pt对低碳烯烃(C2=~C3=)的吸附能力,抑制了深度脱氢和生焦反应,从而提高双功能催化剂对烯烃的选择性。当H2还原温度为450℃时,Pt/10TiO2/ZSM-5催化剂在625℃下的正丁烷转化率为76.1%,低碳烯烃(C2=~C3=)收率为50.9%,分别比Pt/ZSM-5催化剂提高了16.7%和12.6%。  相似文献   

6.
常温和常压下,氢氧直接合成过氧化氢过程中,采用浸渍沉淀法制备Pd/TiO2催化剂。考察了pH、搅拌时间t1、静置时间t2及焙烧温度等制备条件对催化剂活性的影响。正交实验结果表明,影响催化剂活性的顺序为:pH>搅拌时间>焙烧温度>静置时间。在pH=8、t1=0、t2=0和(250~300) ℃焙烧3 h的条件下,制备的催化剂活性最好。  相似文献   

7.
王亚琴  马腾 《工业催化》2018,26(8):31-35
利用紫外光电子能谱等表面科学方法,研究了Pt-Fe模型催化剂的次表层Fe结构[即Pt/Fe/Pt(111)结构]在不同条件下CO的吸附及其氧化反应。结果表明,Pt/Fe/Pt(111)结构在H_2气氛或者超高真空中是种稳定结构,最外层的原子与Pt(111)相同,是密排的铂原子面;但次表层的原子中有约0.5单层的铁原子,使费米边附近(0~2.0)e V的电子态密度明显低于Pt(111)表面,从而改变表面的CO和O_2吸附以及反应性能。程序升温的紫外光电子能谱结果显示,Pt/Fe/Pt(111)表面在(100~300)K,CO的吸附受温度的影响不明显,且O_2能够吸附、活化并使共吸附的CO发生氧化反应;当温度为300 K时,O_2无法在Pt/Fe/Pt(111)表面吸附、活化,所以CO氧化反应无法进行。Pt/Fe/Pt(111)结构虽然能有效地减弱CO的吸附从而避免CO毒化的问题,但O_2的吸附和活化也受到显著抑制并影响到一定条件下CO的氧化反应。  相似文献   

8.
Oxidation of CO on the FeO x /Pt/TiO2 catalyst is markedly enhanced by H2 and/or H2O at 60 °C, but no such enhancement is observed on the Pt/TiO2 catalyst, but shift reaction (CO + H2O → H2 + CO2) does not occur on the FeO x /Pt/TiO2 catalyst at 60 °C. DRIFT-IR spectroscopy reveals that the fraction of bridge bonded CO increases while that of linearly bonded CO decreases on the FeO x loaded Pt/TiO2 catalyst. The in-situ DRIFT IR spectra proved that the bridged CO is more reactive than the linearly bonded CO with respect to O2, and the reaction of the bridge-bonded CO with O2 as well as of the linearly bonded CO is markedly enhanced by adding H2 to a flow of CO + O2. From these results, we deduced that the promoting effect of H2 and/or H2O is responsible for the preferential oxidation (PROX) reaction of CO on the FeO x /Pt/TiO2 catalyst, and a following new mechanism via the hydroxyl carbonyl or bicarbonate intermediate is proposed for the oxidation of CO in the presence of H2O.   相似文献   

9.
Resistive switching random access memory (RRAM) with oxygen ion drift under electric (E)-field has been intensively studied. However, the findings are insufficient because redox reaction by oxygen ion drift occurs beneath the top electrode, and it is difficult to analyze with a nondestructive method. Therefore, an effective method to circumvent this difficulty is suggested in this study with a Pt/Al2O3/TiO2/Pt device using a single layer graphene (SLG) top electrode. Based on results from spectroscopic analyses, the SLG serves as not only an interface free electrode, but also as a highly effective indicator for proving O ion drift motion in response to the E-field in RRAM. The origin of asymmetric resistive switching is due to a redox reaction at the interface by oxygen ion drift. The endurance and operation-current distribution are significantly improved with increased thickness of the Al2O3 insertion layer, which provides carrier tunneling barrier height. The resistance ratio of the high resistance state (HRS) to the low resistance state (LRS) is greater than one order of magnitude in a log scale within 1800 cycles. This result demonstrates that control of a localized charge tunneling barrier is a key factor for reliable resistive switching of the scaled-down RRAM.  相似文献   

10.
Different catalysts based on platinum and a silica, titania or mixed titania/silica support were studied in NO reduction reactions by CO and H2 in the temperature range of 25–400C. The mixed oxide catalysts showed considerably lower onset temperatures in NO/CO reactions but this coincided with a maximum in N2O formation. In NO/H2 reactions all titania containing catalysts produced more N2O than silica supported platinum at low temperatures but were more selective to N2 at high temperatures.  相似文献   

11.
以三乙胺和乙醚为目标污染物,研究了Pt/TiO2上光催化分解水产氢和污染物同时降解的光催化反应。研究了作为电子给体的污染物浓度对光解水制氢反应的影响,污染物本身的降解规律符合Langmuir-Hinshelwood准一级动力学方程。使用拉曼光谱仪和紫外-可见光分光光度计对降解产物浓度进行了表征,讨论了可能的降解反应机理。  相似文献   

12.
The adsorption of CO has been measured on a 2.5 wt% Pt/TiO2 catalyst using TPD. A somewhat surprising observation is that (i) CO2 is produced, even though oxygen is not dosed into the system, (ii) repeated experiments result in the same amount of CO2 desorption. The results appear to be due to a combination of factors–(i) is due to spillover of CO from the Pt to the TiO2 support, while (ii) is due to the diffusion of Ti3+ into the bulk of the TiO2 crystallite, which effectively removes the surface non-stoichiometry which might otherwise be expected.  相似文献   

13.
The preparation of carbon and titanium dioxide supported Pt catalysts through a photochemical and photocatalytic routes were investigated. The catalysts were prepared by irradiation with UV-light (365 nm) at room temperature using H2PtCl6 and C10H14O4Pt (Pt(acac)2) as platinum precursors. The kinetic studies revealed that H2PtCl6 produced metallic platinum faster than Pt(acac)2 and also showed that the amount of platinum deposited on TiO2 was higher than on carbon. The samples were characterized by X-ray diffraction, SEM/EDS and cyclic voltammetry. X-ray diffraction permitted to identify the crystallographic (111) and (200) planes from platinum metal on the catalysts synthesized, the intensity of peaks depends of the amount of platinum deposited. SEM/EDS test confirmed what it was found by the kinetics studies. The electrocatalytic activity was compared with a commercial Pt E-Tek catalyst (10 wt%). The electrochemical results showed that Pt/C-AA catalyst synthesized by liquid phase photo-deposition method has stability in acid media and high distribution of the actives sites on the electrode surfaces. It could be considered as a candidate for electro-catalyst for polymer electrolyte fuel cell. The Pt/TiO2 catalysts did not present electrochemical activity.  相似文献   

14.
通过同轴静电纺丝技术制备了二氧化钛中空纳米纤维,并通过原位还原浸渍法制备了二氧化钛中空纳米纤维负载CoB催化剂。热重分析表明,二氧化钛中空纳米纤维前驱体需要600℃以上的高温焙烧处理才能得到无机氧化物二氧化钛纳米纤维。扫描电镜表征表明,二氧化钛纳米纤维经过焙烧处理以后其表面形貌出现了明显变化,纳米纤维表面变得粗糙,纳米纤维变得更细,同时明显观察到纳米纤维中空微结构。该纳米纤维负载的CoB催化剂在硼氢化钠水解制氢中具有很高的催化活性[2 650.0 mL/(min.g)],显示出该催化剂具有较好的应用前景。  相似文献   

15.
以混合柴油为原料,采用高压滴流床反应器,在反应温度280—360℃、氢分压5-7MPa、氢油体积比300~900、液时空速1—6h。的条件下,考察了柴油在Ni-Mo/TiO2-Al2O3催化剂上的加氢脱硫反应规律,并建立了柴油加氢脱硫经验型模型。采用Levenberg—Marquard优化方法,对实验数据进行回归,确定了反应动力学模型中的有关参数,得到的反应级数为2.9,加氢脱硫反应的表观活化能为143613J/mol,同时得到了在实验条件范围内Ni—Mo/TiO2-Al2O3催化剂上柴油的加氢脱硫动力学方程。经检验,模型计算结果与实验数据吻合良好。  相似文献   

16.
Theoretical Foundations of Chemical Engineering - To support Pt on finely dispersed SiO2 or TiO2/Ti structures obtained via the plasma-electrochemical technique, the extraction-pyrolytic method was...  相似文献   

17.
Rh was deposited on to a well-characterized 3.1% Pt/SiO2 (InCat-1) parent catalyst by underpotential deposition method to obtain a model Rh–Pt bimetallic catalyst. TEM and EDS was used to determine its mean particle size and bulk composition: the particles of ca. 3 nm contained ca. 60% Pt and 40% Rh. The Rh–Pt catalyst was tested in methylcyclopentane (MCP) reaction between 513 K and 603 K and 60–480 Torr H2 pressure (with 10 Torr MCP). The parent Pt/SiO2 as well as a 5% Rh/SiO2 catalyst were also studied for comparison. Four subsequent treatments with O2 and H2 up to T = 673 K were applied on the bimetallic catalyst before the catalytic runs. The overall activity showed positive hydrogen order on all samples, bimetallic Rh–Pt resulting in the lowest TOF values. Ring opening and hydrogenolysis products, as well as unsaturated hydrocarbons were formed from MCP. The selectivity of ring opening products and fragments over Rh–Pt catalyst was between the values observed on Pt and Rh, while the selectivity towards benzene formation was highest on the bimetallic sample, especially at higher temperatures. “Selective” ring opening occurred on all samples, resulting mostly in 2 and 3-methylpentane and less hexane. Different pretreatments with H2 and O2 affected slightly the dispersion values and the catalytic behavior of Rh–Pt sample. The selectivities of the Rh–Pt catalyst being between the values observed for Pt/SiO2 and Rh/SiO2 indicates that the sample studied represented a real bimetallic catalyst, resembling both components and exhibiting at the same time, new properties in addition to those, characteristic of Pt or Rh. Dedicated to Konrad Hayek.  相似文献   

18.
李静  张启俭  齐平  韩丽  邵超 《工业催化》2017,25(6):19-23
二甲醚是一种理想的氢载体,可用于解决氢的储存和运输。以Pt/TiO_2为部分氧化催化剂,结合Ni/Al_2O_3重整催化剂,考察钛前驱体和焙烧温度对二甲醚部分氧化重整制氢反应的影响。结果表明,以Ti(C4H9O)4为原料制备的TiO_2为金红石相,Ti(SO4)2或Ti O(OH)2为原料制备的TiO_2为锐钛矿相;以Ti(C4H9O)4为原料制备的Pt/TiO_2-E催化剂催化性能略好,转化率接近100%,H2收率约90%,表明金红石相TiO_2负载的Pt催化剂略佳;以Ti(SO4)2为原料制备的Pt/TiO_2-S催化剂500℃焙烧可获得金红石相TiO_2。与Pt/Al_2O_3催化剂相比,Pt/TiO_2催化剂具有更好的催化性能,H2收率超过90%,而Pt/Al_2O_3催化剂H2收率约80%。  相似文献   

19.
《Catalysis communications》2007,8(11):1702-1710
The catalytic activity of nanosize gold catalysts supported on MnO2–TiO2 and prepared by deposition–precipitation method has been investigated for preferential oxidation of carbon monoxide in H2 stream. The catalysts were characterized by inductively coupled plasma-atomic emission spectroscopy, X-ray diffraction, nitrogen sorption, transmission electron microscopy, and X-ray photoelectron spectroscopy. The influence of pH in the preparation process and the amount of MnO2 loading on the catalytic properties of the Au/MnO2–TiO2 catalysts were also studied. Fine dispersion of gold nanoparticles on all the supports was obtained. Especially, Au/MnO2–TiO2 with MnO2/TiO2 mol ratio of 2:98, showed a mean Au particle size of 2.37 nm. The nanosized support constrained the size of gold. The addition of MnO2 on Au/TiO2 catalyst improved the selectivity of CO oxidation without sacrificing CO conversion in hydrogen stream between 50 and 100 °C. This could be attributed to the interactions of gold metal with MnO2–TiO2 support and the optimum combination of metallic and electron-deficient gold on the catalyst surface.  相似文献   

20.
Pt catalyst supported on carbon nanofibers (CNFs) has been prepared via ion-exchange and it was characterized by XRD, TEM, N2 physisorption and CO chemisorption. The Pt/CNF catalyst has a small Pt crystallite size in the range of 2–3 nm. This catalyst has been tested in the dehydrogenation of decalin, which is a cycloalkane proposed in the literature as H2 storage media for vehicles and portable devices. The objective is finding a Pt catalyst suitable for in situ generation of H2 from chemical storage in decalin. The results revealed that Pt supported on CNF outperforms a Pt catalyst supported on micro–mesoporous activated carbon. Finally, we propose a reactor configuration aiming at the intensification of H2 production in continuous.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号