首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
大气等离子喷涂(APS)金属时,熔滴不可避免地发生氧化是难以获得粒子间结合充分的致密涂层的主要原因。以FeAl金属间化合物为例,提出一种在粉末中添加亚微米金刚石颗粒引入碳源,以期利用碳在高温下优先氧化的特性抑制等离子喷涂飞行粒子中Fe、Al元素的氧化,获得无氧化物的高温熔滴从而制备低氧含量(质量分数)、粒子间充分结合的FeAl金属间化合物涂层的新方法。采用APS制备Fe Al涂层,研究金刚石的添加对涂层氧含量、碳含量、涂层内粒子间结合质量与硬度的影响规律,探讨FeAl熔滴飞行中的氧化行为。采用商用热喷涂粒子诊断系统测量APS喷涂中的粒子温度,通过SEM与XRD表征了涂层的组织结构,并表征涂层的结合强度与硬度。结果表明,在等离子射流的加热和Fe、Al元素放热反应的联合作用下,飞行中FeAl熔滴的表面温度可达2 000℃以上,满足C原位脱氧的热力学条件。与不含碳的传统Fe Al涂层中的氧含量随喷涂距离的增加而显著增加的规律完全不同,用Fe/Al/2.5C粉末喷涂时涂层中的氧含量随距离的增加而减小,表明飞行中熔滴的氧化得到抑制,实现了C原位脱氧抑制金属元素氧化的自清洁氧化物的效应。FeAl/...  相似文献   

2.
Ti-Al-based intermetallics are promising candidates as coating materials for thermal protection systems in aerospace vehicles; they can operate just below the temperatures where ceramics are commonly used, and their main advantage is the fact that they are lighter than most other alloys, such as MCrAlY. Therefore, Ti-Al-Si alloy coatings with five compositions were manufactured by spraying pure Ti and Al-12 wt.% Si powders using warm spray process. Two-stage hot pressing at 600 and 1000 °C was applied to the deposits in order to obtain titanium aluminide intermetallic phases. The microstructure, chemical composition, and phase composition of the as-deposited and hot-pressed coatings were investigated using SEM, EDS, and XRD. Applying of hot pressing enabled the formation of dense coatings with porosity around 0.5% and hard Ti5(Si,Al)3 silicide precipitates. It was found that the Ti5(Si,Al)3 silicides existed in two types of morphologies, i.e., as large particles connected together and as small isolated particles dispersed in the matrix. Furthermore, the produced coatings exhibited good isothermal and cyclic oxidation resistance at a temperature of 750 °C for 100 h.  相似文献   

3.
To study the effect of Sc and Sr additions on modifying eutectic silicon particles and mechanical properties for Al-Si-Mg casting alloy, they were added with different amounts in F357 alloy without beryllium addition in the present work. It was found that (0.4 wt.% Sc and 0.04 wt.% Sr)-modified F357 alloy presented the optimal tensile properties when compared with the individual addition of Sc or Sr. This was mainly attributed to the synergic modification of eutectic Si in F357 alloys due to the combined additions of Sc and Sr. The silicon modification mechanisms via Sc and Sr were emphasized to be examined in this paper, and the fracture mechanism of the obtained alloys was also discussed.  相似文献   

4.
The oxidation of four Ni–10Cr–ySi–4Al alloys has been studied in 1 atm O2 at 900 and 1000 °C to examine the effects of various Si additions on the behavior of the ternary alloy Ni–10Cr–4Al, which during an initial stage formed external NiO scales associated with an internal oxidation of Cr + Al, later replaced by the growth of a chromia layer at the base of the scale plus an internal oxidation of Al. The addition of 2 at.% Si was able to prevent the oxidation of nickel already from the start of the test, but was insufficient to form external alumina scales at 1000 °C, while at 900 °C alumina formed only over a fraction of the alloy surface. At 1000 °C the addition of 4 at.% Si produced external chromia scales plus a region of internal oxidation of Al and Si, a scaling mode which formed over a fraction of the alloy surface in combination with alumina scales also by oxidation at 900 °C. Conversely, the presence of about 6 at.% Si produced external alumina scales over the whole sample surface at 900 °C, but only over about 60 % of the alloy surface at 1000 °C. The changes in the oxidation modes of the ternary Ni–10Cr–4Al alloy produced by Si additions have been interpreted by extending to these quaternary alloys the mechanism of the third-element effect based on the attainment of the critical volume fraction of internal oxides needed for the transition to the external oxidation of the most-reactive-alloy component, already proposed for ternary alloys.  相似文献   

5.
In-situ plasma spraying (IPS) is a promising process to fabricate composite coatings with in-situ formed thermodynamically stable phases. In the present study, mechanically alloyed Al-12Si and SiO2 powder was deposited onto an aluminum substrate by atmospheric plasma spraying (APS) to obtain a composite coating consisting of in-situ formed alumina reinforced hypereutectic Al-18Si matrix alloy. The effects of spray parameters (arc current and spray distance) and in-flight particle characteristics (temperature and velocity) on in-situ reaction intensity (alumina and silicon) have been investigated. The results show that, in-situ alumina formation and silicon intensity strongly depend on in-flight particle characteristics, spray distance and substrate temperature.  相似文献   

6.
A family of alumina-forming austenitic (AFA) stainless steels is under development for use in aggressive oxidizing conditions from ~600?C900 °C. These alloys exhibit promising mechanical properties but oxidation resistance in air with water vapor environments is currently limited to ~800 °C due to a transition from external protective alumina scale formation to internal oxidation of aluminum with increasing temperature. The oxidation behavior of a series of AFA alloys was systematically studied as a function of Cr, Si, Al, C, and B additions in an effort to provide a basis to increase the upper-temperature oxidation limit. Oxidation exposures were conducted in air with 10% water vapor environments from 800?C1000 °C, with post oxidation characterization of the 900 °C exposed samples by electron probe microanalysis (EPMA), scanning and transmission electron microscopy, and photo-stimulated luminescence spectroscopy (PSLS). Increased levels of Al, C, and B additions were found to increase the upper-temperature oxidation limit in air with water vapor to between 950 and 1000 °C. These findings are discussed in terms of alloy microstructure and possible gettering of hydrogen from water vapor at second phase carbide and boride precipitates.  相似文献   

7.
Oxidation behavior of Ni–20Cr alloy and Ni-base self-fluxing (NiCrSiBC) alloy in atmospheric plasma spraying was studied experimentally. The in-flight particles were collected by quenching into liquid nitrogen. The oxygen contents in the collected particles and the coatings deposited on a substrate were analyzed by the inert gas fusion method. The oxide distribution, morphology and phase composition were analyzed using SEM, EDX, XRD, and AES. The results clearly show that the oxygen content in the NiCrSiBC coating was remarkably lower than that in the Ni20Cr coating by a factor of over 10. The formation of Cr2O3 and its vaporization primarily occurred during the flight of Ni20Cr particles, which dominated the oxidation in the coating. In contrast, little oxygen pickup occurred during flight for the NiCrSiBC alloy particles and a thin surface layer of 5 nm with rich in oxygen was found on the surface of NiCrSiBC splats. The mechanism of protecting NiCrSiBC alloy particles from oxidation is preferential oxidation of C, Si and B and simultaneous vaporization of the formed oxides.  相似文献   

8.
The microstructure, tensile properties and corrosion behavior of the Mg-8 wt.% Mg2Si-x%Ca alloy have been studied by the use of optical microscopy, scanning electron microscopy equipped with energy-dispersive spectroscopy, x-ray diffraction, standard tensile testing, polarization test and electrochemical impedance spectroscopy (EIS) measurements. Microstructural studies indicated that Ca modifies both primary and eutectic Mg2Si phase. It was found that the average size of primary Mg2Si particles is about 60 μm, which is dropped by about 82% in the alloy containing 0.05 wt.% Ca. By the addition of different Ca contents, Ca-rich intermetallics (i.e., CaSi2 and CaMgSi) were formed. The modification mechanism of adding Ca during solidification was found to be due to the strong effect of CaMgSi phase as a heterogonous nucleation site, apart from CaSi2 which was reported before, for Mg2Si intermetallics. Tensile testing results ascertained that Ca addition enhances both ultimate tensile strength (UTS) and elongation values. The optimum amount of Ca was found to be 0.1 wt.%, which improved UTS and elongation values from about 130 MPa and 2% to 165 MPa and 5.5%, whereas more Ca addition (i.e., 3 wt.%) reduced the tensile properties of the alloy to about 105 MPa and 1.8%, which can be due to the formation of CaMgSi intermetallics with deteriorating needle-like morphology. Polarization and EIS tests also showed that the Mg-3%Si-0.5%Ca alloy pronounces as the best anti-corrosion alloy. Nevertheless, further added Ca (up to 3 wt.%) deteriorated the corrosion resistance due to predominance of worse galvanic coupling effect stemmed from the presence of stronger CaMgSi cathode in comparison with Mg2Si. With higher Ca additions, an adverse effect was seen on corrosion resistance of the Mg-3%Si alloy, as a result of forming a weak film on the alloy specimen surface.  相似文献   

9.
Effect of Si on the microstructures and mechanical properties of high-chromium cast iron was investigated. The eutectic carbides are refined greatly and a transformation of matrix from austenitic matrix to pearlite is observed with increase in Si content from 0.5 to 1.5 wt.%. The refinement of eutectic microstructure is attributed to the decrease in the eutectic temperature, while the transformation from austenite matrix to pearlite is associated with the increase in solubility of carbon in the matrix. In the pearlite matrix, two types of pearlite are observed: one with lamellar pearlite, distributing at the periphery, and the second one with granular pearlite at the center. The density of secondary carbides precipitated from the matrix increases greatly with addition of Si from 0.5 to 1.5 wt.%, which is associated with more carbon and chromium elements confined in the matrix in the alloy containing 1.5 wt.%. More rod-like particles are observed in the alloy containing 0.5 wt.% Si, while the morphology of secondary carbides of alloy containing 1.5 wt.% is granular. The mechanical properties are improved with a 7% increase in tensile strength from 586 to 626 MPa and impact toughness from 5.8 to 7.3 J cm?2.  相似文献   

10.
This study investigated the effect of easily oxidizable impurities on the oxidation behavior of iron containing small amounts of copper and nickel. The motivation for this work stems from a cracking phenomenon in low carbon steels known as hot shortness. This type of cracking is caused by formation of a copper-rich liquid layer and is reduced in the presence of easily oxidizable impurities. This work studied iron alloys with 0.3 wt.% copper, 0.15 wt.% nickel, and 0.1 wt.% (manganese, aluminum, or silicon) oxidized in air at 1,150 °C. Parabolic oxidation rates were not affected by manganese or aluminum but were decreased with silicon additions. Manganese and aluminum additions led to internal MnO and hercynite formation. These slightly increased the amount of material entrapped into the oxide. Silicon additions led to a nearly continuous fayalite layer near the oxide/metal interface that decreased the oxidation rate and therefore the amount of copper-rich liquid.  相似文献   

11.
The suspension plasma spray (SPS) process was used to produce coatings from yttria-stabilized zirconia (YSZ) powders with median diameters of 15 μm and 80 nm. The powder-ethanol suspensions made with 15-μm diameter YSZ particles formed coatings with microstructures typical of the air plasma spray (APS) process, while suspensions made with 80-nm diameter YSZ powder yielded a coarse columnar microstructure not observed in APS coatings. To explain the formation mechanisms of these different microstructures, a hypothesis is presented which relates the dependence of YSZ droplet flight paths on droplet diameter to variations in deposition behavior. The thermal conductivity (k th) of columnar SPS coatings was measured as a function of temperature in the as-sprayed condition and after a 50 h, 1200 °C heat treatment. Coatings produced from suspensions containing 80 nm YSZ particles at powder concentrations of 2, 8, and 11 wt.% exhibited significantly different k th values. These differences are connected to microstructural variations between the SPS coatings produced by the three suspension formulations. Heat treatment increased the k th of the coatings generated from suspensions containing 2 and 11 wt.% of 80 nm YSZ powder, but this k th increase was less than has been observed in APS coatings.  相似文献   

12.
Mo–9Si–8B–1Ti, Mo–9Si–8B–1.8Ti, Mo–9Si–8B–0.2La and Mo–9Si–8B–0.4La2O3 (at.%) alloys were prepared using mechanical alloying followed by hot isostatic pressing and field assisted sintering. XRD, SEM and EBSD analysis confirmed the formation of Mo solid solution, A15 and T2 phases in the alloys. Isothermal oxidation behavior of the specimens was studied in the temperature range from 750 to 1,300 °C for up to 100 h. Both the Ti and La containing alloys showed superior oxidation behavior compared to unalloyed Mo–Si–B at 900 °C at the initial periods of oxidation. Ti-added alloys suffered higher rate of weight loss at higher temperatures (1,000–1,300 °C) due to the formation of non-protective low viscosity SiO2-TiO2-B2O3 scale. La-alloyed Mo–Si–B showed superior oxidation resistance at intermediate temperatures (900 °C) as well as at higher temperatures. Enrichment of La at the oxide/alloy interface was found to be the reason for improved oxidation behavior of La-alloyed Mo–Si–B. Amongst the four materials studied, the La2O3 containing alloy showed the best oxidation resistance at 900 °C.  相似文献   

13.
Thermal spray coatings are formed by successive impingements and interbonding materials among the splats, solidified individual molten particles. Depending on the processing conditions employed during the spray process, deposits are produced with an assortment of microstructures and properties. This study highlights how the coating oxidation differences are influenced by the mechanisms involved during the spray process. The commercial steel powder referenced Amdry XPT 512 is chosen for a systematic study of comparison across different spraying techniques. Steel particles were sprayed with a F4 plasma torch and with a shrouded plasma spray process used in order to protect particles against atmospheric oxidation. The plasma jet was successively shielding by an inert gas shroud and by an oxidizing gas shroud. In-flight oxidation and post impact oxidation present in coatings are discussed in detail and the effects of these mechanisms on coating properties are addressed. The comparison was made on in-flight particle characteristics and on coating properties in terms of oxide content and porosity level. Using shrouded gas, in-flight characteristics are quite similarly independent of the nature of the shrouded gas. This way, the comparison of oxide contents present in the coatings corresponds to in-flight oxidation and is completely dependent on the nature of the shrouded gas. Comparing these results to those obtained by APS, a decrease in both velocity and temperature of in-flight particles was observed leading also to a significant decrease in oxide contents and to a slight increase in porosity level compared to coatings sprayed with air shrouding.  相似文献   

14.
Oxidation of TiAl alloys has been recognized as an obstacle for high-temperature applications such as aero engine and gas turbine. Substantial efforts have been made to improve oxidation resistance of TiAl alloys at elevated temperatures. In this study, multilayered thermal barrier coatings are prepared to protect a high-Nb-containing TiAl alloy from oxidation by air plasma spraying. The combination of Al2O3-13wt.%TiO2 ceramic coatings and NiCoCrAlY metallic coatings can improve thermal stability and increase the service lifetime of coatings. The fully melted TiO2 particles distribute in ceramic coatings uniformly and act as sealing pores and microcracks, which decrease porosity of the ceramic coatings and reduce diffusion channels of oxygen atoms. The porosity of surface and cross-section morphology are 5.5?±?0.8 and 5.1?±?0.8%, respectively. The results of oxidation experiment carried out at 800 and 900 °C for 100 h indicate that the coatings can effectively protect a high-Nb-containing TiAl alloy from oxidation. The mass gain of the high-Nb-containing TiAl alloys with coatings is lower than that of the one without coatings. The ceramic coatings retard diffusion of large amount of oxygen atoms, and bond coatings avoid to be excessively oxidized. Thus, the multilayered thermal barrier coatings exhibit an excellent long-term stability.  相似文献   

15.
The aim of the present investigation was to gain an initial understanding of the effect of (macro-) alloying with Ti on the oxidation behavior of Mo–Si–B alloys in the ternary phase region of Mo_ss–Mo3Si–Mo5SiB2 at 820–1,300 °C. Motivated by recent studies and thermodynamic calculations, the alloy compositions Mo–9Si–8B–29Ti (at.%) and Mo–12.5Si–8.5B–27.5Ti (at.%) were selected and synthesized by arc-melting. Compared to the reference alloy Mo–9Si–8B, superior initial oxidation rates at 1,100–1,300 °C as well as a significant density reduction by nearly 18 % were observed. Due to enhanced initial evaporation of MoO3 and mainly inward diffusion of oxygen, a borosilicate-rutile duplex scale with a continuous TiO2 phase had formed. Detailed investigations of the oxidation mechanism by SEM, EDX, XRD and confocal micro-Raman spectroscopy indicated that Ti alloying is promising with regard to further improvement of the oxidation resistance as well as the strength-to-weight ratio of Mo–Si–B alloys.  相似文献   

16.
Dunning  J. S.  Alman  D. E.  Rawers  J. C. 《Oxidation of Metals》2002,57(5-6):409-425
The effect of Si and Al additions on the oxidation of austenitic stainless steels with a baseline composition of Fe–16Cr–16Ni–2Mn–1Mo (wt.%) has been studied. The combined Si and Al content of the alloys did not exceed 5 wt.%. Cyclic-oxidation tests were carried out in air at 700 and 800°C for a duration of 1000 hr. For comparison, conventional 18Cr–8Ni type-304 stainless steel specimens were also tested. The results showed that at 700°C, alloys containing Al and Si, and alloys with only Si additions showed weight gains about one half that of the conventional type-304 alloy. At 800°C, alloys that contained both Al and Si additions showed weight gains approximately two times greater than the type-304 alloy. However, alloys containing only Si additions showed weight gains four times less than the 304 stainless. Further, alloys with only Si additions preoxidized at 800°C, showed zero weight gain in subsequent testing for 1000 hr at 700°C. Clearly, the oxide-scale formation and rate-controlling mechanisms in the alloys with combined Si and Al additions at 800°C were different than the alloys with Si only. ESCA, SEM, and a bromide-etching technique were used to analyze the chemistry of the oxide films and the oxide–base-metal interface, in order to study the different oxide film-formation mechanisms in these alloys.  相似文献   

17.
魏琪  张林伟  李辉  崔丽 《焊接学报》2009,30(11):44-48
利用粒子收集装置和附加氩气保护罩,研究了铁粒子和NiCoCrAlY粒子在等离子喷涂过程中的氧化行为及其对涂层性能的影响.结果表明,粒子在飞行过程中存在对流氧化和扩散氧化两种氧化机制,粒子的氧化方式取决于离开喷嘴的距离;离开喷嘴距离越长,粒子氧化越严重;采用附加氩气保护罩能明显减少喷涂过程中外界空气对粒子的氧化,降低涂层孔隙率,提高NiCoCrAlY涂层的抗高温氧化性能.
Abstract:
The oxidation mechanisms of iron particles and NiCoCrAlY particles during plasma spraying process and its effect on the sprayed coatings were investigated by the in-flight particles collection setup and the gas shrouding. The results show that there are two oxidation mechanisms during in-flight oxidation: one is the diffusion oxidation; the other is the convective oxidation, which are decided by the distance from the spraying particles to the nozzle. The oxidation content increases with the increasing of the standoff distance. The shrouded gas can decrease the oxidation content of inflight particles and increase the oxidation resistance of NiCoCrAIY coatings.  相似文献   

18.
In this study, the precipitation sequence of a 5 vol.% SiC particles reinforced Al-1.12 wt.%Mg-0.77 wt.%Si alloy composite fabricated by traditional powder metallurgy method was investigated by transmission electron microscopy and hardness measurements. The results indicated that the addition of SiC reinforcements not only suppresses the initial aging stage but also influences the subsequent precipitates. The precipitation sequence of the composite aged at 175 °C can be described as: Guinier-Preston (G.P.) zone → β″ → β′ → B′, which was confirmed by high-resolution transmission electron microscopy. This work might provide the guidance for the design and fabrication of hardenable automobile body sheet by Al-based composites with enhanced mechanical properties.  相似文献   

19.
Hypereutectic Al–Si alloy is an aluminum alloy containing at least 12.6 wt.% Si. It is necessary to evenly control the primary Si particle size and distribution in hypereutectic Al–Si alloy. In order to achieve this, there have been attempts to manufacture hypereutectic Al–Si alloy through a liquid phase sintering. This study investigated the microstructures and high temperature mechanical properties of hypereutectic Al–14Si–Cu–Mg alloy manufactured by liquid phase sintering process and changes in them after T6 heat treatment. Microstructural observation identified large amounts of small primary Si particles evenly distributed in the matrix, and small amounts of various precipitation phases were found in grain interiors and grain boundaries. After T6 heat treatment, the primary Si particle size and shape did not change significantly, but the size and distribution of CuAl2 (θ) and AlCuMgSi (Q) changed. Hardness tests measured 97.36 HV after sintering and 142.5 HV after heat treatment. Compression tests were performed from room temperature to 300 °C. The results represented that yield strength was greater after heat treatment (RT?~?300 °C: 351?~?93 MPa) than after sintering (RT?~?300 °C: 210?~?89 MPa). Fracture surface analysis identified cracks developing mostly along the interface between the primary Si particles and the matrix with some differences among temperature conditions. In addition, brittle fracture mode was found after T6 heat treatment.  相似文献   

20.
Hydroxyapatite (HA) coatings are being widely used in biomedical applications owing to their excellent biocompatibility and osteoconductivity. Recent studies have demonstrated that the crystallographic texture plays an important role in improving the chemical stability and mechanical properties of HA coatings. In this study, optimized APS parameter was selected to deposit HA coatings with strong (002) crystallographic texture, high phase purity and enhanced melting state. Cross-sectional SEM images show uniformly distributed columnar grains perpendicular to the coating surface. To study the formation conditions of columnar grains, coatings with distinct microstructure were deposited with different spray parameters. Moreover, HA coatings were deposited on substrates with varying temperatures such as 25, 300 and 600 °C at a long stand-off distance to evaluate the role of the substrate temperature in the formation of columnar grains. The results indicate that completely molten in-flight particles and slow cooling rate are necessary conditions to form a strong crystallographic texture. The present study suggests that the crystalline structure of HA coatings deposited and formed by APS could be well controlled by modifying spray parameters and substrate temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号