首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
TC4钛合金微弧氧化Cr2O3复合膜的结构及摩擦磨损性能   总被引:1,自引:0,他引:1  
在硅酸钠-六偏磷酸钠体系中添加1.5g/LCr2O3微粒,采用直流脉冲模式在TC4钛合金表面制备了微弧氧化Cr2O3复合膜;利用SEM、EDS、XRD对复合膜的微观形貌和结构进行观察分析,并研究了其在室温干摩擦条件下的摩擦磨损性能。结果表明:复合膜的表层孔隙中填满了微小的Cr2O3颗粒,表面只能看到少量微孔;膜层中除了金红石及锐钛矿TiO2相、Al2TiO5相外,还出现了大量的Cr2O3相,且包含了一些非晶态的P、Si化合物。在相同的摩擦磨损条件下,微弧氧化Cr2O3复合膜的摩擦系数更小、磨损量更低、耐磨性也更好。在10N载荷下,复合膜只发生轻微的粘着磨损,几乎未发生磨粒磨损;在50N载荷下,复合膜的磨粒磨损有所加剧,且出现了第二相粒子流失。Cr2O3颗粒主要通过对微弧氧化膜孔隙的填充作用、载荷转移作用及弥散强化作用,来降低复合膜的摩擦系数和表面磨损量,提高其耐磨性。  相似文献   

2.
通过微弧氧化技术(Micro-arc oxidation, MAO)对TC4合金进行表面处理,探究了不同MAO电压对TC4合金氧化膜层摩擦磨损性能的影响。使用激光共聚焦显微镜、扫描电镜、X射线衍射仪、显微硬度计及高温真空摩擦磨损试验仪对膜层形貌、相成分、硬度以及摩擦学性能进行了测试。结果表明:随着MAO工作电压的升高,MAO-TC4合金表面膜层中锐钛矿型TiO2和金红石型TiO2的含量随之增加,其表面粗糙度、显微硬度以及平均摩擦因数亦随之增大,磨损率先降低后增大。当MAO工作电压为280 V时,磨损率最小,为2.8 mg/cm2,摩擦磨损性能最佳。  相似文献   

3.
利用微弧氧化(MAO)技术在TC4钛合金表面原位制备陶瓷膜层,并通过硅酸钠水溶液对膜层进行了封孔处理。采用X射线衍射仪(XRD)分析了膜层相组成,通过扫描电子显微镜(SEM)观察了膜层表面形貌。通过粘结拉伸测试,比较了膜层在封孔前后与基体的结合强度。利用高温氧化实验,考察了TC4基体及膜层试样封孔前后的抗高温氧化性能。结果表明:微弧氧化膜层与基体间的结合强度较高,经封孔处理及高温氧化100 h后,膜基结合强度降低至4.29 MPa。与TC4基体相比,微弧氧化膜层的高温氧化增重量小,抗高温氧化性能得到了显著的提高。封孔处理提高了微弧氧化膜层的致密性,使其能更好地阻止氧透过膜层向基体内侵入,进一步提高了膜层的抗高温氧化性能。  相似文献   

4.
在硅酸盐、磷酸盐及高锰酸钾的混合电解液中研究了不同电压对TC4钛合金微弧氧化膜层性能的影响,通过扫描电镜(SEM)、X射线衍射(XRD)和X射线光电子能谱(XPS)分析了膜层的微观形貌、相组成及化学成分,用傅里叶变换红外光谱仪测试了样品的红外发射率。结果表明,随着电压的升高,膜层的厚度、粗糙度及红外发射率持续增加,膜层中Ti O2与Ti的特征峰逐渐减弱,非晶相成为主要的组成部分。结合XRD与XPS分析结果可推断膜层中主要元素Si、P、Mn均以非晶态存在。当电压为540 V时膜层发射率有较大幅度的增加并达到最大,在8-20μm的波段范围内平均发射率可达0.84。  相似文献   

5.
采用微弧氧化技术,在TC4钛合金表面制备高硬度氧化陶瓷层(MAO),对比研究了TC4钛合金基体与微弧氧化陶瓷层在2种不同位移幅值下的微动磨损行为。结果表明:位移幅值由80μm增大到150μm时,TC4钛合金基体微动损伤机制由粘着磨损和磨粒磨损转变为疲劳磨损和氧化磨损,而微弧氧化陶瓷层的损伤机制始终以氧化磨损为主;位移幅值为80μm时,TC4钛合金基体与微弧氧化陶瓷层磨损量均较小,而摩擦系数大且波动大;位移幅值为150μm时,两者磨损量出现不同程度的增大,而摩擦系数略有下降且趋于平稳;与TC4钛合金基体相比,微弧氧化陶瓷层的平均摩擦系数小,磨损轮廓浅,且磨损量仅为钛合金基体的70%。微弧氧化陶瓷涂层能够保护钛合金基体表面,有效改善TC4钛合金耐磨性。  相似文献   

6.
在硅酸钠+磷酸钠体系溶液中添加不同含量的石墨粉,以其为氧化液对TC4钛合金进行表面微弧氧化。通过扫描电子显微镜、能谱仪、X射线衍射仪及摩擦磨损试验机,研究了石墨含量对TC4钛合金微弧氧化膜表面形貌、元素分布、相组成及摩擦系数的影响。结果表明,石墨含量的增加对TC4钛合金表面微弧氧化膜的形貌无太大影响,氧化膜层呈多孔结构,膜层表面有块状石墨颗粒分布;膜层中的Ti、P、O元素含量相对稳定,Si、C元素含量略有波动;膜层主要由TiO2和Ti组成,石墨对膜层中TiO2的形成有一定的阻碍作用;微弧氧化膜中的石墨颗粒能够起到一定的减摩作用,随着石墨含量的增加氧化膜的平均摩擦系数从0.85降至0.54。  相似文献   

7.
采用微弧氧化方法对医用钛合金表面进行改性,利用X射线衍射分析(XRD)、扫描电镜(SEM)对微弧氧化膜层的表面形貌和化学成分进行分析,通过小振幅往复摩擦磨损试验测量膜层的耐磨损性能.结果表明:钛合金经过微弧氧化表面处理后,所得膜层存在不同尺寸的放电微孔,氧化膜内层相对外层较为致密;膜层主要由大量金红石型TiO2相、非晶相SiO2及少量锐钛矿型TiO2相组成;与基体相比,微弧氧化膜层的初期摩擦因数从0.7降低至0.1,耐磨性提高.  相似文献   

8.
在锆盐电解液体系中制备出厚度为20μm的微弧氧化膜层,通过动态热机械分析仪研究了TC4钛合金表面的微弧氧化膜层与基体结构的热-机耦合载荷失效行为。结果表明:温度对TC4钛合金微弧氧化膜层服役失效有重要影响。当升温到300℃时,膜层与基体开始出现热膨胀系数不稳定而产生热错配残余应力;当温度到达500℃时,膜层内部出现明显的裂纹,且膜层也在一定程度上与基体发生剥落行为。  相似文献   

9.
目的研究CuSO_4浓度和微弧氧化工艺参数(电压、氧化时间)对TC4钛合金微弧氧化膜颜色及性能的影响。方法在磷酸钠电解液中,对TC4钛合金进行微弧氧化处理,并添加CuSO_4获得不同颜色的陶瓷膜,对氧化膜的宏观形貌、微观形貌、物相结构以及硬度进行分析。结果添加CuSO_4能使陶瓷膜颜色变深,随着CuSO_4浓度升高,膜层由灰色逐渐变为红褐色。当CuSO_4质量浓度为0.5 g/L时,氧化膜表面均匀致密,显微硬度最高(627.1HV);当CuSO_4质量浓度为1.5 g/L时,氧化膜显微硬度最低(382.8HV)。随着电压升高,膜层颜色加深,色泽更均匀,但表面硬度下降。在400 V条件下制备的氧化膜硬度最低,但是色泽最均匀。随着氧化时间的延长,氧化膜厚度增加,颜色加深,色泽更为均匀,但是当氧化时间超过15 min后,氧化膜颜色变浅。结论 CuSO_4对微弧氧化膜的显色作用明显,其浓度及微弧氧化工艺参数(电压、氧化时间)均对涂层性能、色泽、致密性、厚度及相组成具有很大的影响。  相似文献   

10.
通过在电解液中添加不同浓度的TaC微粒,在TC4钛合金表面制备了含TaC微粒的掺铜微弧氧化层,以提升其在模拟海水中的抗腐蚀、耐磨损和抗菌性能.采用扫描电镜(SEM)、X射线衍射(XRD)、摩擦磨损试验、抗菌试验和电化学腐蚀试验等研究了TaC微粒浓度对微弧氧化层微观结构及性能的影响.结果 表明:TaC微粒均匀分布在掺铜微...  相似文献   

11.
目的提高TC4钛合金的耐磨耐蚀性能。方法采用双阴极等离子溅射沉积技术在TC4合金表面制备了TiCN涂层。通过XRD表征了涂层的物相组成,并通过SEM表征了涂层的微观形貌。利用声发射划痕仪研究了涂层与基体的结合力,摩擦磨损试验机用于研究TiCN涂层的摩擦磨损性能。用电化学工作站在3.5%NaCl溶液中进行电化学实验。结果所沉积涂层均匀致密,无明显缺陷,涂层由外层厚度约为8μm的TiCN沉积层和其下约4μm厚的过渡层组成。TiCN涂层与TC4基体的结合强度比较高,其结合力达到66.4 N。室温条件下法向载荷相同时,TiCN涂层的磨痕宽度远小于TC4钛合金基体的磨痕宽度。TiCN涂层的比磨损率为(1~2)×10-5 mm~3/(N·m),TC4钛合金的比磨损率为(2~4)×10~(-4) mm~3/(N·m),TiCN涂层的比磨损率较TC4钛合金降低了1个数量级以上,并且对载荷的变化不敏感。TiCN涂层与TC4钛合金基体比较,具有更高的自腐蚀电位和更低的腐蚀电流密度,涂层的腐蚀电流密度为1.57×10-9 A/cm~2,TC4钛合金的腐蚀电流密度为1.35×10-8 A/cm~2,涂层的腐蚀电流密度较钛合金基体小1个数量级。TiCN涂层的EIS阻抗谱容抗弧值也较大。结论双阴极等离子溅射沉积TiCN涂层可以有效提高TC4钛合金的耐磨耐腐蚀性能。  相似文献   

12.
TC11钛合金表面电弧离子镀TiAlN涂层防护性能的研究   总被引:8,自引:0,他引:8  
利用电弧离子镀技术在TC11钛合金基体上沉积TiAlN涂层。采用扫描电子显微镜(SEM)、X射线衍射仪(XRD)等方法对比分析了钛合金基体和涂层氧化前后的表面形貌、物相结构。采用X射线光电子能谱仪(XPS)对TiAlN涂层性能进行了分析,研究了基体和镀膜的耐磨性。结果表明,TiAlN涂层显著改善了钛合金的粘着磨损性及高温抗氧化性,在空气中650℃静态氧化100h后,TiAlN涂层依然保持良好的状态和抗磨损性能。  相似文献   

13.
以钛铝铌单质元素球磨混合粉末为原料,采用激光合金化技术在TC4钛合金表面成功制备出Ti-Al-Nb合金涂层。分析了涂层的物相组成、组织形貌及成分、显微硬度,并利用YG6球对磨来测试涂层在干摩擦条件下的摩擦磨损性能。结果表明:在激光功率P=1.8 k W,扫描速度V=5 mm/s,光斑直径D=2 mm下制备的涂层整体均匀致密、无裂纹,与TC4基体呈良好的冶金结合;涂层组织主要由Ti_3Al、AlNb_2、α-Ti 3种物相组成;Ti-Al-Nb涂层的显微硬度值沿层深方向呈平缓的梯度分布,平均硬度(HV)为5970 MPa,比TC4基体(3600 MPa)提高了66%;涂层平均摩擦系数为0.33,比TC4钛合金(0.45)降低了27%;涂层的磨损体积为0.044 mm3,耐磨性是钛合金基体(0.130 mm~3)的2.95倍。  相似文献   

14.
目的 为提高TC4钛合金的抗微动磨损性能,对比研究类金刚石薄膜(DLC)和TC4钛合金在干摩擦条件下的微动磨损行为,揭示DLC薄膜抗微动磨损的机理.方法 在TC4钛合金基体上利用非平衡磁控溅射技术制备DLC薄膜.利用原子力显微镜、拉曼光谱和纳米压痕仪分析薄膜的表面形貌、物相组成以及纳米硬度.利用球/平面接触形式SRV-...  相似文献   

15.
目的制取微弧氧化复合膜,探讨TC4钛合金微弧氧化膜层的形成温度。方法采用在微弧氧化电解液中分别加入第二相颗粒(α-Al_2O_3、ZrO_2、W)的方法,制得相应的TC4钛合金微弧氧化复合膜,利用第二相颗粒是否发生溶解相变来探测膜层形成的最高温度。结果在微弧氧化复合膜中均发现了第二相颗粒,α-Al_2O_3、ZrO_2和W粉颗粒均发生了溶解,小尺寸的第二相颗粒在膜层中全部溶解,大尺寸颗粒由于动力学的原因,熔池作用的时间很短,颗粒来不及全部溶解,仅发生了表壳和棱角的溶解,导致大颗粒的尺寸变小,轮廓变得更加圆润。在中粒径为50 nm的W粉制作的复合膜层中,并未发现W粉颗粒的存在,但是W元素均存在于膜层中。这是因为W粉颗粒太小(仅50 nm),颗粒在膜层中全部溶解。在中粒径为1μm的W粉颗粒制作的复合膜中,发现了W粉颗粒,颗粒轮廓圆润,尺寸小于1μm。这是颗粒部分溶解的缘故(仅表壳和轮廓发生了溶解)。在复合膜中,不含有第二相颗粒的区域均能相应地检测到Al、Zr、W元素的存在。结论根据SEM和EDS检测结果可以得知,微弧氧化膜层形成的过程中,熔池形成的最高温度超过了W的熔点3410℃。  相似文献   

16.
利用微弧氧化技术在TC4钛合金表面制备高硬度陶瓷涂层,研究其表面抗微动磨损性能。结果显示陶瓷涂层主晶相为Al2TiO5相,硬度不均匀,由结合层向表面呈现先增高后降低的趋势,最高硬度达1150 HV0.05,远高于钛合金基体的硬度。微动磨损试验结果表明,陶瓷层的致密层起到主要防护作用。磨损初期阶段,疏松层脱落、细化、堆积同时伴随摩擦副较为严重的磨损;稳定阶段为滑动磨损,致密层磨损轻微,摩擦副磨损严重,钛合金磨屑由摩擦副向致密层转移。  相似文献   

17.
TC4钛合金表面激光熔覆掺Y2O3复合涂层的显微组织和性能   总被引:2,自引:2,他引:0  
目的提高钛合金表面的耐磨性能。方法在TiB_2:TiC=1:3的粉末配比下,添加不同质量分数Y_2O_3稀土氧化物,制备成膏状混合粉末。采用5 k W横流CO_2激光器,在TC4钛合金表面激光熔覆掺Y_2O_3的TiB_2和TiC粉末,制备耐磨性复合涂层。通过扫描电子显微镜(SEM)、X射线能谱仪(EDS)、X射线衍射仪(XRD)对激光熔覆层的微观形貌和组织成分进行了分析;用显微维氏硬度计对熔覆层的显微硬度进行了测量;用万能摩擦磨损试验机对熔覆层的耐磨性能进行了测试。结果添加4%Y_2O_3后,熔覆层中部组织明显细化,结合区由致密组织结构转变为晶须网状结构;熔覆层的最高显微硬度为1404.6HV0.2,是基体的3.7倍;熔覆层的磨损量减少了66.67%,且其摩擦系数有明显的降低。结论添加4%Y_2O_3对TC4钛合金表面激光熔覆TiB/TiC复合熔覆层耐磨性能有显著的提高。  相似文献   

18.
利用氩弧熔覆技术在TC4合金表面制备出TiC增强的Ti基复合涂层。利用SEM、XRD和EDS分析了熔覆涂层的显微组织;利用显微硬度仪测试了复合涂层的显微硬度;利用摩擦磨损试验机测试了涂层在室温干滑动磨损条件下的耐磨性能。结果表明:氩弧熔覆涂层组织均匀致密,熔覆层与基体呈冶金结合,涂层中有大量的TiC树枝晶和条块状TiC颗粒;复合涂层明显改善了TC4合金的表面硬度,HV平均硬度可达9GPa;复合涂层室温干滑动磨损机制为磨粒磨损和轻微粘着磨损。  相似文献   

19.
为改善TC21钛合金表面微弧氧化(micro arc oxidation,MAO)涂层的微观结构致密性和耐磨性能,对MAO涂层进行了激光重熔改性,并对重熔后涂层的微观结构、成分、相组成以及硬度、摩擦磨损性能等进行了表征测试。结果显示,重熔MAO涂层由重熔外层、重熔内层和热影响层3层结构组成,其中外层和内层主要由Al2TiO5、rutile-TiO2和α-Al2O3组成,热影响层由α-Ti和β-Ti转变组织组成,重熔MAO涂层的硬度显著增大。在摩擦磨损实验中,重熔MAO涂层摩擦系数低于MAO涂层和TC21钛合金基体,其磨损机制以粘着磨损为主,并伴有轻微的磨粒磨损。激光重熔MAO涂层显著提高了TC21钛合金摩擦磨损性能。  相似文献   

20.
在自主搭建气流喷射式冲蚀试验平台上,采用不同粒径的石英砂,对TC4钛合金进行冲蚀试验;利用电子天平、扫描电子显微镜和X-射线应力仪对试件表面冲蚀质量损失率、冲蚀区微观形貌及应力进行检测与分析。结果表明,TC4钛合金表面的冲蚀损伤机理显著依赖于砂尘粒径,并在400μm处发生机理转变。砂尘粒径小于400μm时,TC4钛合金表面冲蚀质量损失率小于0.4 mg/g,其表面损伤形式以犁削、切削、铲削以及点坑等塑性损伤为主;砂尘粒径大于400μm时,TC4钛合金表面在高应变率条件下发生表观韧脆转变,质量损失率突增至0.8 mg/g以上,损伤形式以解理破坏、脆性剥落为主。基于解理断裂的双判据模型,解释了砂尘粒径高于400μm时TC4钛合金表面发生的脆性剥落现象。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号