首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 187 毫秒
1.
目的 制备具有不同电位差的多层阳极Ni-P/Ni-Zn-P复合镀层.方法 采用化学镀的方法,在Q235钢基体表面制备内层为低磷Ni-P合金、中层为高磷Ni-P合金、外层为Ni-Zn-P合金镀层的三层复合镀层.通过金相显微镜、扫描电子显微镜(SEM)、X射线能谱仪(EDS)、X射线衍射仪(XRD)、电化学工作站等仪器对复合镀层表面形貌、成分结构及腐蚀电位进行分析.结果 相较于低磷Ni-P镀层和高磷Ni-P镀层,Ni-P/Ni-Zn-P三层复合镀层的晶胞大小均匀一致且胞与胞之间致密平滑.内层低磷Ni-P镀层断面厚度约为14.5μm,镍的质量分数约为96.5%,磷的质量分数为3.5%;中层高磷Ni-P镀层断面厚度约为17.6μm,镍的质量分数约为90.2%,磷的质量分数约为9.8%;Ni-P/Ni-Zn-P三层复合镀层断面总厚度约为40μm,镍的质量分数约为80.7%,锌和磷的质量分数分别为7.6%和11.7%.在Tafel极化曲线中,Ni-P/Ni-Zn-P三层复合镀层的腐蚀电流密度最小,为3.815×10-6 A/cm2,具有更好的耐蚀性.在模拟海水环境(5%NaCl溶液)中腐蚀220 h后,内层、中层组织腐蚀成片,出现孔洞且有点蚀,而Ni-P/Ni-Zn-P三层复合镀层几乎没有腐蚀,只有部分区域出现点蚀,组织较为完整,说明三层镀层较单层、双层镀层具有更好的耐腐蚀性.结论 制备具有电位差的多层阳极Ni-P/Ni-Zn-P复合镀层具有更好的性能,且相较于内层单层、中层双层Ni-P合金镀层,其腐蚀速率也明显降低,耐腐蚀性能更好.  相似文献   

2.
Ni-Zn-P合金镀层在人工模拟海水中腐蚀行为的研究   总被引:2,自引:1,他引:1  
赵丹  徐旭仲  徐博 《表面技术》2016,45(4):169-174
目的 提高金属材料在海洋环境中的耐腐蚀性和使用寿命.方法 采用碱式化学镀方法 在Q235碳钢表面施镀Ni-P镀层和Ni-Zn-P合金镀层,镀液配方NiSO4·6H2 O 20~25 g/L,C6 H5 O7 Na3·2H2 O 50~70 g/L,NH4Cl 25~30 g/L,NaH2PO2·H2O 15~25 g/L.制备Ni-Zn-P合金镀层时,在以上配方中加入0.4~0.8 g/L ZnSO4·7H2 O.采用金相显微镜和扫描电子显微镜(SEM)观察镀层在人工模拟海水中腐蚀前后的组织形貌,用能谱分析仪(EDS)分析镀层腐蚀前后表面成分.结果 Ni-P镀层和Ni-Zn-P合金镀层中的P质量分数分别为11.26%和9.97%.从P含量和镀层组织形貌,可以确定得到的两种镀层是连续致密的非晶镀层.Ni-Zn-P合金镀层比Ni-P镀层的胞状组织更加均匀平滑,胞与胞的边界结合更加连续致密.在人工模拟海水中腐蚀144 h后,Ni-P镀层出现明显的点蚀坑,Ni-Zn-P合金镀层仍然连续完整.Ni-Zn-P合金镀层腐蚀后,Zn含量明显下降,并出现少量的Fe和O,表明合金镀层腐蚀过程是Zn优先被腐蚀,然后镀层逐渐被腐蚀破坏,最后基体发生腐蚀.Ni-Zn-P合金镀层的腐蚀速率明显低于Ni-P镀层的.结论 Ni-Zn-P合金镀层的胞状组织比Ni-P镀层的更加均匀平滑,胞与胞的边界结合更加连续致密,Ni-Zn-P合金镀层腐蚀速率明显低于Ni-P镀层.  相似文献   

3.
快速化学镀 Ni-Zn-P 合金工艺及镀层性能   总被引:2,自引:2,他引:0  
目的确定快速化学镀Ni-Zn-P合金的工艺。方法通过一系列实验,研究主盐含量、pH值、温度、时间等对镀层沉积速度及镀层锌镍比的影响,确定最优工艺条件。借助SEM,EDS,XRD及电化学方法分析镀层微观形貌、成分及耐蚀性。结果在ZnSO4·7H2O8 g/L,NiSO4·6H2O 35 g/L,NaH2PO2·H2O20 g/L,NH4Cl 50 g/L,C6H5Na3O7·2H2O 70 g/L,稳定剂1.5 mg/L,p H=9.0,温度90~95℃的条件下,化学镀Ni-Zn-P合金沉积速度为5~6μm/h,镀层中Zn质量分数为8%~10%,P质量分数为6%左右,Ni质量分数为80%~85%。Zn的存在使Ni呈现出晶态结构,在XRD谱图上2θ=45°及2θ=52°位置分别出现了Ni(111),Ni(200)衍射峰。施镀时间不会影响镀层成分,但会影响镀层耐蚀性。施镀1.5 h时,镀层厚度约为9~10μm,其耐蚀性略好于相同厚度的Ni-P镀层。结论 Ni-Zn-P化学镀沉积速度较快,8%~10%的Zn使镀层中Ni呈晶态结构,且改善了镀层耐蚀性。  相似文献   

4.
赵丹  杨立根  徐旭仲 《表面技术》2016,45(1):69-74,95
目的通过研究低碳钢表面碱性化学镀Ni-Zn-P合金镀层的沉积行为及其沉积机理,对化学镀Ni-Zn-P有进一步认识。方法采用碱性化学镀方法,改变施镀时间在低碳钢表面化学镀Ni-Zn-P合金镀层。使用扫描电镜观察合金镀层的表面和断面形貌,用电子能谱仪分析镀层表面和断面成分。结果化学镀Ni-Zn-P合金镀层的形成过程是:固液界面形成原子团→原子团在能量较高的地方择优沉积→原子团累积生长→向周围延伸扩展→覆盖整个机体→形成完整镀层→均匀叠加生长。试样表面成分检测表明,施镀1~3 s内表面出现Ni元素,Ni质量分数在3 min时达到最大值75.93%,此后维持相对稳定;施镀1 min时表面出现P,P质量分数随施镀时间延长而逐渐增加,在30 min时达到最大值12.03%,此后维持相对稳定;施镀5 min时表面出现Zn,随着施镀时间的延长,Zn沉积量变化不大。表面和断面成分分析表明,化学镀Ni-Zn-P合金镀层的沉积过程不是Ni,Zn,P三种元素同时沉积,而是Ni优先沉积,然后Ni和P共沉积,最后Ni,Zn,P三种元素共同沉积。根据能斯特方程算得沉积电位E_(Ni~2+/Ni)=-0.337 V,E_(Zn~2+/Zn)=-0.906 V,两者的沉积电位相差较大,说明该化学镀条件下不能发生合金共沉积。结论推测化学镀Ni-Zn-P合金镀层是催化诱导还原反应沉积机理,即在镍还原诱导下引发的Zn共沉积。  相似文献   

5.
目的提高AZ91D镁合金的腐蚀防护性能。方法采用化学镀前处理在AZ91D镁合金表面制备一种保护性的Ni-Co合金镀层。分别采用环境扫描电镜(ESEM)、X射线衍射(XRD)和能量散射谱(EDS)分析合金镀层的表面形貌、微结构特点和化学成分。采用动电位极化(PC)和电化学阻抗谱(EIS),分析测试在模拟海洋环境(中性3.5%Na Cl溶液)中Ni-Co合金镀层对AZ91D镁合金的腐蚀防护性能。结果镁合金表面化学镀Ni-P镀层均匀覆盖,晶粒生长较致密,表面呈菜花状形貌,Ni-P镀层中P质量分数约为5.6%。Ni-Co合金镀层表面均匀且呈金字塔状形貌,形成了面心固溶体(FCC),镀层中Co质量分数约为31%。Ni-P镀层和Ni-Co合金镀层的厚度分别约为11μm和19μm。在模拟海洋(中性3.5%Na Cl溶液)环境中,镁合金裸基体、化学镀前处理Ni-P镀层、Ni-Co合金镀层的腐蚀电位分别为-1485、-372、-284 m V,其腐蚀电流密度分别是3.4×10-5、1.8×10-6、2.9×10~(-7) A/cm2,所拟合的电荷转移电阻分别为4.72×103、1.70×104、2.06×106?/cm2。结论化学镀前处理Ni-P镀层可为镁合金提供较好的腐蚀防护,Ni-Co合金镀层能够为镁合金提供更显著的腐蚀防护。  相似文献   

6.
目的研究以三乙醇胺作为络合剂对化学镀Ni-W-P合金镀层的组织结构和腐蚀性能的影响。方法以化学镀的方法在40Cr基体上制备Ni-W-P合金镀层,研究了三乙醇胺对Ni-W-P合金镀层的成分结构、沉积速率、耐蚀性和孔隙率的影响。结果三乙醇胺用量为8 m L/L时镀层W、P质量分数达到峰值,分别为3.63%、9.34%。三乙醇胺用量较低时,镀层具有非晶态结构;三乙醇胺用量达到12 m L/L时镀层开始出现晶态峰,具有混晶态结构。三乙醇胺浓度对镀层的沉积速率和孔隙率具有很大影响,三乙醇胺用量为10 m L/L时,镀速达到最大值14.1μm/h,用量为8 m L/L时,镀层的孔隙率最低,为0.07%。化学镀Ni-W-P合金镀层的耐蚀性随着三乙醇胺浓度的增加,具有先增加后降低的趋势,用量为8 m L/L时,镀层的腐蚀速率最低,为5.6μm/a,耐蚀性最好。结论以三乙醇胺作为络合剂能够得到胞状颗粒且颗粒均匀细小的Ni-W-P合金镀层,对镀层的结构具有一定的影响,可以提高Ni-W-P合金镀层的沉积速率。Ni-W-P合金镀层具有很好的耐蚀性,腐蚀速率最低为5.6μm/a。  相似文献   

7.
添加稀土元素对Ni-P/PVDF化学复合镀层耐蚀性的影响   总被引:1,自引:0,他引:1  
在化学镀Ni-P/PVDF合金镀液中添加稀土元素Y3+和La3+制备Ni-P/PVDF(RE)复合镀层,用电化学腐蚀测试系统测试复合镀层的耐蚀性,研究了稀土元素的添加量对镀层耐蚀性能的影响。结果表明,在基础镀液中加入适量稀土元素后,所获得的Ni-P/PVDF(RE)复合镀层的晶粒较Ni-P/PVDF镀层更为细小,表面更加均匀和致密;镀层的耐蚀性随着稀土元素加入量的增加呈现先增强后减弱的趋势;在稀土元素的添加量为0.1g/L时,复合镀层的耐蚀性最好。在PVDF微粒和稀土元素的共同影响下,进一步提高Ni-P/PVDF(RE)镀层的耐蚀性。  相似文献   

8.
Ni-P合金梯度镀层微观结构及在酸性介质中的耐蚀性能   总被引:1,自引:0,他引:1  
采用化学镀技术在LY12铝合金表面制备了Ni-P合金梯度镀层,该梯度镀层的总厚度大约40μm,镀层中P含量从最内侧的6.27%逐渐升高到最外侧的14.74%。三种镀层的表面虽然均为非晶态结构,可保护基体不受侵蚀,但稀土Y(NO3)3的添加可使镀层的非晶化程度进一步提高,更容易形成钝化膜,使镀层的耐蚀性得到提高。对比3种镀层的腐蚀速率及极化曲线,在酸性介质中镀层的耐蚀性表现为:Ni-P梯度/Y(NO3)3涂层>Ni-P/Y(NO3)3涂层>Ni-P梯度涂层。  相似文献   

9.
研究了镀液配方对化学镀Ni-Zn-P三元合金施镀效果的影响,探明了镀速、镀层硬度及其腐蚀防护性,以及镀层Ni,Zn和P含量的变化规律,确定了含Zn 9.50~16.57和P 7.55~13.59 (质量分数,%) 的Ni-Zn-P镀层制备工艺。对典型试样进行了SEM和XRD分析以及耐酸、耐碱及耐盐溶液腐蚀性能测试,结果表明:镀层表面平整、均匀,结构致密,具有典型的胞状/球状及条带状微观形貌;镀层主要由非晶、微晶或其混合相组成,其中Zn和P固溶于fcc的Ni晶格中;镀层耐盐、耐碱腐蚀能力较强。  相似文献   

10.
目的提高铝合金耐蚀性的同时,保证其良好的导电性。方法通过化学镀的方法,在铝合金表面沉积一层镍磷合金。研究镀层厚度对试样导电性和耐蚀性的影响。通过电化学试验和浸泡试验,分析施镀前后的铝合金试样在模拟不同性质隧道渗水环境中的耐腐蚀性能。结果当镍磷镀层厚度为11.6μm时,镀层致密无孔隙,且表面胞状物分布均匀,试样具有最佳导电耐蚀综合性能。随着镀层厚度的增加,试样的体积电阻率随之增加。镀层厚度为11.6μm时,试样实测体积电阻率为3.01×10~(–8)Ω·m。试样在3.5%NaCl溶液中的阻抗值随镀层厚度的增加,先增加后降低,镀层厚度为11.6μm时,具有最佳的耐腐蚀性能。在pH=2、3.5%NaCl和pH=12的腐蚀介质中,化学镀镍磷后的试样自腐蚀电流密度相对于铝基体分别下降30%、60%和5个数量级。结论厚度为11.6μm的镍磷镀层可以赋予铝合金在各模拟环境中最佳的耐腐蚀性能,同时保障良好的导电性能。  相似文献   

11.
In this study, Ni-P coatings and sealing of the coatings by Ce-rich solution on Cf/Al composite surface for enhanced corrosion resistance are investigated. The corrosion resistance of uncoating sample in 3.5 wt.% NaCl solution was investigated and a comparison with Ni-P and Ce-sealed Ni-P coatings is given. Effect of Ce-sealing on Ni-P coating is discussed. The results of electrochemical measurements of corrosion performance of Cf/Al composites show that sealing of Ni-P coatings with Ce-rich solution can improve the corrosion resistance. The Ce-rich-sealed Ni-P coating has higher corrosion resistance than the coating without Ce, and the electroless plated Ni-P coating on composite surface has higher corrosion resistance than the bare sample, as evidenced by EIS and potentiodynamic polarization measurements. The microstructure of the Cf/Al composites and the two kinds of coatings (i.e., Ni-P coating and Ce-sealed Ni-P coating) were examined by scanning electron microscopy, energy dispersive spectroscopy, and transmission electron microscopy. The Ce-sealed Ni-P coatings on Cf/Al composite surface have a total thickness of ~11 μm of which 10 μm is the thickness of the Ni-P coating and ~1 μm is the thickness of the Ce-rich sealing. It shows that the selected area electron diffraction ring pattern of Ce-rich sealing on Ni-P plated composite is consistent with Ce6O11 or CeO2. X-ray photoelectron spectroscopy results show that Ce4+ was the dominant oxidation state for Ce-rich sealing on Ni-P plated composite. The Ce-sealing treatment on Ni-P coating has improved the corrosion resistance over and above the corrosion resistance offered by the Ni-P mono-coating to the bare substrate.  相似文献   

12.
氧化镱对碳钢表面化学镀 Ni-Zn-P 合金的影响   总被引:3,自引:3,他引:0  
目的改善Ni-Zn-P合金镀层的制备工艺和镀层的物理性能。方法鉴于稀土镧系元素因特殊电子结构表现出优异的物理和化学性能,向基础镀液中添加Yb2O3,在低碳钢钢管表面化学镀沉积NiZn-P合金镀层。通过称量法算得沉积速率,通过盐水浸泡实验测试镀层耐蚀性,采用扫描电镜观察镀层的表面形貌,用X-射线衍射仪检测镀层的晶体结构,考察镀液中Yb2O3浓度对镀层的沉积速率、表面形貌、耐蚀时间、晶体结构等的影响。结果随着Yb2O3浓度的增大,镀层的沉积速率呈先升高、后下降的趋势,镀层的表面形貌、耐蚀时间和晶体结构均是先得到改善,而后被削弱。向基础镀液中添加15 mg/L Yb2O3后,镀速提高了21.6%,耐蚀时间延长了16.7%,镀层由粗糙、灰暗、不均匀和有缺陷,变为平整、光亮、均匀和致密,镀层的非晶相程度得到一定强化,耐蚀性能有所提高。结论基础镀液中添加Yb2O3的适宜质量浓度为15 mg/L,该条件下可提高Ni-Zn-P合金的镀速,并改善镀层的质量。  相似文献   

13.
化学沉积 Ni-Mo-P 和 Ni-P 镀层退火晶化组织及耐蚀性   总被引:1,自引:1,他引:0  
目的研究化学沉积Ni-4.11%Mo-6.50%P和Ni-9.19%P合金镀层退火晶化转变特征,通过定量表征镀层的晶化程度、晶粒尺寸及结晶相的质量分数,建立显微组织与耐蚀性的关联。方法采用XRD衍射技术和Jade软件分析,定量表征镀层的晶化组织特征,由SEM/EDS测试确定镀层的成分及表面形貌,通过浸泡腐蚀实验及金相显微观察,对比两种镀层的耐蚀性。结果 Ni-Mo-P镀层在低于400℃退火时,只有Ni相结晶;在≥400℃退火时,发生Ni3P晶化反应,同时伴有Ni-Mo固溶体的形成,600℃时的晶化程度为88.13%。相比之下,Ni-P镀层中Ni3P相开始析出的温度降至300℃,600℃时的晶化程度达到91%。在相同温度进行热处理时,Ni-Mo-P镀层晶粒尺寸小于Ni-P镀层。在发生Ni3P晶化反应的温度下,两种镀层中Ni3P的晶粒尺寸总是大于Ni相。在0.5 mol/L的H2SO4中,对于Ni-Mo-P镀层,除300℃外,其他温度下的热处理均能显著改善其耐蚀性;而对于Ni-P镀层,镀态下具有最好的耐蚀性能。在10%的HCl溶液中,退火温度为600℃时,Ni-Mo-P镀层的耐点蚀性能更好;而Ni-P合金则相反,镀态及低温200℃退火后的耐点蚀性能最好。结论 Mo的共沉积提高了Ni-Mo-P镀层Ni3P的析出温度,降低了镀层的晶化程度及晶粒尺寸;与Ni-P镀层相比,高温退火的Ni-Mo-P镀层表现出了优异的耐点蚀性能,但耐硫酸均匀腐蚀的性能较差。  相似文献   

14.
薛燕  王振国 《表面技术》2017,46(7):91-96
目的提高镁合金的耐蚀性和耐磨性。方法以AZ91D镁合金为基体,采用SiC颗粒质量浓度为3 g/L的Ni-P化学镀溶液,在其表面沉积不同时间,制备Ni-P-SiC复合镀层。通过扫描电子显微镜(SEM)、显微硬度测试、粗糙度仪、电化学腐蚀和磨损等试验来分析和评价Ni-P-SiC复合镀层的厚度、表面粗糙度、显微硬度、耐腐蚀性能和耐磨性能。结果 Ni-P-SiC复合镀层的厚度和表面粗糙度随沉积时间增加而增加,沉积时间为150 min时,镀层厚度可达53μm,表面粗糙度为2.5μm。沉积时间为120 min时,镀层的显微硬度最高,为641HV,此时复合镀层的耐蚀性和耐磨性最好,自腐蚀电位高达-0.73 V,腐蚀电流密度为0.78μA/cm~2,磨损体积最小,为1.04×10~(-3)mm~3。与AZ91D镁合金基体相比,沉积复合镀层后的样品更耐蚀,说明复合镀层有效改善了镁合金基体的耐蚀性。结论沉积时间对Ni-P-SiC复合镀层的性能有一定影响,在沉积时间为120 min时获得的复合镀层具有较好的耐蚀性和耐磨性。  相似文献   

15.
首先,将预处理后的合金样品在碱式碳酸镍溶液中进行预镀,目的是在镁锂合金表面形成一层Ni-P合金薄膜;然后,在硫酸镍溶液中进行二次镀覆,获得具有保护作用的镀层。对获得的镀层的表面形貌、结构和抗腐蚀能力进行研究。结果表明:采用该方法能够在镁锂合金表面形成平整、光亮、致密的镀层,镀层与基体结合良好。镀层中磷含量达到13.56%(质量分数),镀层的维氏硬度约为HV549。极化曲线测试表明,Ni-P镀层的腐蚀电位升高至-0.249V(vsSCE),并有一个很宽的钝化区,这种现象显示该镀层具有良好的抗腐蚀能力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号