首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The gas holdup, ?, and volumetric mass transfer coefficient, kLa, were measured in a 0.051 m diameter glass column with ethanol as the liquid phase and cobalt catalyst as the solid phase in concentrations of 1.0 and 3.8 vol.‐%. The superficial gas velocity U was varied in the range from 0 to 0.11 m/s, spanning both the homogeneous and heterogeneous flow regimes. Experimental results show that increasing catalyst concentration decreases the gas holdup to a significant extent. The volumetric mass transfer coefficient, kLa, closely follows the trend in gas holdup. Above a superficial gas velocity of 0.04 m/s the value of kLa/? was found to be practically independent of slurry concentration and the gas velocity U; the value of this parameter is found to be about 0.45 s–1. Our studies provide a simple method for the estimation of kLa in industrial‐size bubble column slurry reactors.  相似文献   

2.
3.
The contributions of pressure drop due to wall frictional losses to the total gas holdup of two‐phase viscous non‐Newtonian systems were experimentally investigated using a 150 dm3 circulating bubble column. The column had a downcomer‐to‐riser cross‐sectional area ratio of 0.54 and a dispersion height of 2.5 m. Aqueous solutions of xanthan gum and carboxymethyl cellulose were used to simulate a wide range of rheological properties. The average wall shear stress was estimated from Al‐Masry's (1999) correlation for the average wall shear rate in external loop airlift reactors. Pressure drop due to wall shear stress was found significantly contributed by 10–70 % to the total gas holdup. This contribution has always been ignored in the data presented in the literature due to the absence of reliable and simple correlations for the average shear rate and shear stress. Corrections to gas holdup were found necessary for non‐Newtonian solutions with concentrations of ≥ 0.5 wt/wt.‐%.  相似文献   

4.
One of the greatest challenges in the characterization of bubbles in a bubble column has been the prediction of the bubble diameter and the gas holdup. In this study a novel technique for predicting the mean bubble diameter and the local gas holdup using a non‐invasive ultrasonic method with neural network was investigated. The measurement parameters of the energy attenuation and the transmission time difference of ultrasound are used to obtain the mean bubble diameter and the local gas holdup in an air‐water dispersion system using neural network reconstruction. Bubble size distributions in a 2‐D bubble column are obtained experimentally by using a photographic method. An adequate selection of the neural network structure has been carried out to represent the training data. The representative results using the present structure show good agreement with the measured data.  相似文献   

5.
A simple experimental approach was developed to measure the gas phase volumetric heat and mass transfer coefficients in a bubble column and a slurry bubble column employing a single gas nozzle. The experimental technique was based on a transfer model that simulates humidification and direct contact evaporation models in the case of a gas bubble rising in a liquid of uniform temperature. The temperature and relative humidity of the inlet and outlet gas in the column are the only measurements required in this technique. Experiments were carried out in a 0.15 m inner diameter column using water as the liquid phase, air as the gas phase, and cation resins of 0.1 mm diameter and a specific gravity of 1.2, as the solid phase. The results showed that, when using solid concentrations in the range of 7–10 wt %, both the volumetric gas‐phase heat and mass transfer coefficients increased with an increase in the gas superficial velocity and were further enhanced by increasing the solid load after a certain minimum superficial velocity had been reached in the column (0.044 m/s in the system used). Increasing the solid load beyond 10 wt %, did not contribute to a further increase in these coefficients. Furthermore, the gas holdup in the column increased with the superficial gas velocity and was further enhanced when the solid‐phase load was in the range of 7–10 wt %. These observations agree well with previously reported findings by other investigators.  相似文献   

6.
7.
The results are reported of an experimental study of the gas holdup, ?G, large bubble diameter, dLb, and large bubble rise velocity, VLb, in a 0.1 m wide, 0.02 m deep and 0.95 m high rectangular slurry bubble column operated at ambient temperature and pressure conditions. The superficial gas velocity U was varied in the range of 0–0.2 m/s, spanning both the homogeneous and heterogeneous flow regimes. Air was used as the gas phase. The liquid phase used was C9‐C11 paraffin oil containing varying volume fractions (?S = 0, 0.05, 0.10, 0.15, 0.20 and 0.25) of porous catalyst (alumina catalyst support, 10 % < 10 μm; 50 % < 16 μm; 90 % < 39 μm). With increasing slurry concentrations, ?G is significantly reduced due to enhanced bubble coalescence and for high slurry concentrations the “small” bubbles are significantly reduced in number. By the use of video imaging techniques, it was shown that the large bubble diameter is practically independent of the gas velocity for ?S > 0.05 and U > 0.1 m/s. The measured large bubble rise velocity VLb agrees with the predictions of a modified Davis‐Taylor relationship.  相似文献   

8.
In this paper a CFD model for a bubble column reactor undergoing a first order reaction A → B is developed. The reactor operates in the homogeneous bubbly regime and has a diameter DT = 1 m and height HT = 5 m. The incoming gas stream contains inerts, varying in proportion from 10 % to 90 %. Three‐dimensional transient Eulerian simulations were carried out for an inlet superficial gas velocity UG = 0.04 m/s. Due to the consumption of A, the gas phase suffers contraction along the height of the reactor and as a consequence there is a significant change in the gas velocity along the column height; this variation in gas velocity is stronger when the incoming gas contains a smaller proportion of inerts. The CFD simulations show that there is a considerable influence of gas contraction on both the bubble column hydrodynamics and on the reactor conversion. None of the conventionally used reactor models is capable of describing the reactor performance in the case of high gas phase contraction.  相似文献   

9.
H. Jin  Y. Qin  S. Yang  G. He  Z. Guo 《化学工程与技术》2013,36(10):1721-1728
The effects of operating conditions on radial variation of gas holdups, bubble swarm rising velocity, and Sauter mean diameter were investigated in a bubble column reactor under elevated pressures using a conductivity probe method. Air served as gas phase and tap water as liquid phase with varying gas velocity and pressure. All three parameters increased constantly with higher superficial gas velocity. Maximum holdup, velocity, and Sauter mean diameter were found at the center of the cross section. Two different cases for Sauter mean diameter distribution were observed. The gas holdups increase continuously with higher system pressure, but decrease for bubble swarm rising velocity and Sauter mean diameter. According to experimental results, an empirical correlation of the gas holdup profiles is presented.  相似文献   

10.
In this paper, we develop a CFD model for describing a bubble column reactor for carrying out a consecutive first‐order reaction sequence A → B → C. Three reactor configurations, all operating in the homogeneous bubbly regime, were investigated: (I) column diameter DT = 0.1 m, column height HT = 1.1 m, (II) DT = 0.1 m, HT = 2 m, and (III) DT = 1 m, HT = 5 m. Eulerian simulations were carried out for superficial gas velocities UG in the range of 0.005–0.04 m/s, assuming cylindrical axisymmetry. Additionally, for configurations I and III fully three‐dimensional transient simulations were carried out for checking the assumption of cylindrical axisymmetry. For the 0.1 m diameter column (configuration I), 2‐D axisymmetric and 3‐D transient simulations yield nearly the same results for gas holdup ?G, centerline liquid velocity VL(0), conversion of A, χA, and selectivity to B, SB. In sharp contrast, for the 1 m diameter column (configuration III), there are significant differences in the CFD predictions of ?G, VL(0), χA, and SB using 2‐D and 3‐D simulations; the 2‐D strategies tend to exaggerate VL(0), and underpredict ?G, χA, and SB. The transient 3‐D simulation results appear to be more realistic. The CFD simulation results for χA and SB are also compared with a simple analytic model, often employed in practice, in which the gas phase is assumed to be in plug flow and the liquid phase is well mixed. For the smaller diameter columns (configurations I and II) the CFD simulation results for χA are in excellent agreement with the analytic model, but for the larger diameter column the analytic model is somewhat optimistic. There are two reasons for this deviation. Firstly, the gas phase is not in perfect plug flow and secondly, the liquid phase is not perfectly mixed. The computational results obtained in this paper demonstrate the power of CFD for predicting the performance of bubble column reactors. Of particular use is the ability of CFD to describe scale effects.  相似文献   

11.
Gas holdups and the rising velocity of large and small bubbles are measured using the dynamic gas disengagement approach in a pressured bubble column of 0.3 m in diameter and 6.6 m in height. The effects of superficial gas velocity, liquid surface tension, liquid viscosity, and system pressure on the gas holdups and the rising velocity of small and large bubbles are investigated. The holdup of large bubbles and the rising velocity of small bubbles increase with increasing liquid viscosity and liquid surface tension. Meanwhile, the holdup of small bubbles and the rising velocity of a swarm of large bubbles decrease. Moreover, the holdup of large bubbles and the rising velocity of a swarm of small bubbles decrease with increasing system pressure. A correlation for the holdup of small bubbles is obtained from experimental data.  相似文献   

12.
In this work, the chaotic bubbling mechanism in a gas‐liquid bubble column with a single nozzle was investigated. The signal for the analysis was the time series of pressure fluctuations measured from a pressure transducer probe placed in the bubble column close to the nozzle. In order to study the bubbling process, statistical analysis, qualitative and quantitative nonlinear analyses were carried out for the pressure fluctuations. Power spectra used as standard statistical measures provided preliminary evidence that bubbling in the middle values of gas flow rates may be chaotic in nature. Phase plots provided a qualitative means of analyzing the fine geometry structure of the attractor reconstructed from the bubbling time signal. Positive finite estimates of the Kolmogorov entropy provided a quantitative evidence of behavior consistent with chaos. Besides previous diagnostic tools, the local nonlinear short‐term prediction was also used as a supplement method. It was found that the bubbling process exhibits a deterministic chaotic behavior in a certain range of the gas flow rate. When increasing the gas flow rate, the sequence of periodic bubbling, primary and advanced chaotic bubbling, and jetting or random bubbling were successively observed. However, no clear period doubling sequence leading to chaotic behavior was observed. The sharp loss of the ability to predict the pressure signal successfully with the nonlinear prediction method provides the strongest evidence of the presence of the chaotic bubbling. The variations of the nonlinear invariants, such as the Kolmogorov entropy and the correlation dimension together with the plot of the correlation integral with the operation conditions, might be developed as potential and effective quantitative tools for flow regime identification of the bubbling process.  相似文献   

13.
张锴  赵玉龙 《煤化工》1996,(3):31-36
本文分析了锥形鼓泡床内流型过渡、平均气含率及气含率轴向分布特性,考察了入口气体速度、静止液体(或淤浆)高度及淤浆浓度的影响,比较了与圆柱床的差异,结果表明对于鼓泡床内气体体积收缩的反应,用锥形床的冷态试验可以较精确地模拟其实际结果。  相似文献   

14.
Reactor models that feature a practical way to design bubble columns on the semi‐industrial or even industrial scale have been published only rarely in the usual scientific literature. Creating a one‐dimensional model in the equation‐oriented simulation software ASPEN Custom Modeler? (ACM), one can reach a compromise between model precision and modeling – i.e. computational power – based on correlations selected specifically for the application in question. The model quantitatively describes, with sufficient accuracy, the processes in a bubble column reactor. The paper discusses investigations for designing a pilot plant reactor for hydrogenating 2‐ethylhexanal as an example of its application. Geometry and operating conditions were optimized, and the results are shown in the form of spatially resolved reaction and temperature profiles.  相似文献   

15.
加压大型气液鼓泡床中气含率的实验和关联   总被引:2,自引:1,他引:2  
对内径0.3 m、高6.6 m的加压鼓泡床中的气含率进行了系统研究,得出了表面张力、粘度、压力等对气含率的影响规律;结果表明,在实验范围内,鼓泡床中的气含率随表面张力和粘度的升高而降低,随压力的升高而升高;并用气泡聚并的能量理论作了定性的解释. 根据542组实验数据得出了气含率的关联式.  相似文献   

16.
The Kolmogorov entropy (KE) algorithm was applied successfully to gas holdup fluctuations measured in a 0.102 m I.D. stainless steel bubble column equipped with a perforated plate distributor (19 holes ?? 1 mm). Nitrogen was used as the gas, while both 1‐butanol and gasoline were used as liquids. 1‐Butanol was aerated at pressures, P = 0.1 and 0.5 MPa, whereas gasoline was aerated at P = 0.1 and 0.2 MPa. Based on the peaks in the KE values under the pressures examined in both liquids, the boundaries of the following five regimes were identified: bubbly flow, first transition, second transition, coalesced bubble (4‐region flow) and coalesced bubble (3‐region flow). As the pressure increases to P = 0.5 MPa in 1‐butanol, all four transition velocities shift to higher superficial gas velocity, uG. In addition, in gasoline at P = 0.2 MPa and uG ≤ 0.017 m s–1, the existence of a chain bubbling regime was detected, whereas in 1‐butanol at P = 0.5 MPa and uG ≤ 0.02 m s–1, both laminar and turbulent chain bubbling subregimes were identified. It was found that in 1‐butanol under ambient pressure, the second and fourth transition velocities occur earlier than in gasoline.  相似文献   

17.
In this work, a mathematical model based on axial dispersion has been suggested to simulate the behavior of a multistage bubble column reactor. A six‐stage pilot‐scale reactor with an inner diameter of 0.35 m and a height of 12 m was used for hydrogen peroxide production through the direct oxidation of isopropyl alcohol at isothermal condition. Steady‐state and dynamic simulations were performed to predict the concentration of all the reactants in gas and liquid phases. It was observed that for steady state‐conditions the simulation results were consistent with the experimental results. Dynamic models involving liquid back‐mixing can be used for the simulation of start‐up, shut‐down or transition operations in this kind of a rector.  相似文献   

18.
In an ejector induced downflow bubble column energy supplied as a high velocity liquid jet is utilized in different sections of the ejector‐contactor system, which leads to air entrainment at the secondary entrance of the ejector. The energy losses in the different sections, viz. ejector, mixing zone and gas‐liquid bubbly flow zone have been evaluated theoretically. Experimental results show that the total energy losses calculated on the basis of theoretical expression are almost the same as energy supplied by the liquid jet. A simple correlation was developed for the air entrainment rate in terms of operating and design parameters of the system.  相似文献   

19.
Computational fluid dynamics (CFD) was used to simulate the effect of sparger construction in gas holdup and liquid axial velocity in a shallow bubble column reactor for the air‐water system. Model parameters were evaluated in 2‐ and 3‐D simulations by using a two‐fluid model and the standard k‐? turbulence model. The Eulerian‐Eulerian approach was employed to predict the height of column that is affected by the sparger. It was found that increasing the number of orifices in the sparger increases the total gas holdup. Moreover, each orifice causes an increase in the circulation and mixing of liquid in the column. The results of the simulations follow the trends observed in the findings of Dhotre and Joshi [1].  相似文献   

20.
The volumetric mass transfer coefficient kLa in a 0.1 m‐diameter bubble column was studied for an air‐slurry system. A C9‐C11 n‐paraffin oil was employed as the liquid phase with fine alumina catalyst carrier particles used as the solid phase. The n‐paraffin oil had properties similar to those of the liquid phase in a commercial Fischer‐Tropsch reactor under reaction conditions. The superficial gas velocity UG was varied in the range of 0.01 to 0.8 m/s, spanning both the homogeneous and heterogeneous flow regimes. The slurry concentration ?S ranged from 0 to 0.5. The experimental results obtained show that the gas hold‐up ?G decreases with an increase in slurry concentration, with this decrease being most significant when ?S < 0.2. kLa/?G was found to be practically independent of the superficial gas velocity when UG > 0.1 m/s is taking on values predominantly between 0.4 and 0.6 s–1 when ?S = 0.1 to 0.4, and 0.29 s–1, when ?S = 0.5. This study provides a practical means for estimating the volumetric mass transfer coefficient kLa in an industrial‐size bubble column slurry reactor, with a particular focus on the Fischer‐Tropsch process as well as high gas velocities and high slurry concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号