首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
Organic semiconductors based on π‐conjugated systems are the focus of considerable interest in the emerging area of soft or flexible photonics and electronics. Whereas in recent years the performances of devices such as organic light‐emitting diodes (OLEDs), organic field‐effect transistors (OFETs), or solar cells have undergone considerable progress, a number of technical and fundamental problems related to the low dimensionality of organic semiconductors based on linear π‐conjugated systems remain unsatisfactorily resolved. This low dimensionality results in an anisotropy of the optical and charge‐transport properties, which in turn implies a control of the material organization/molecular orientation during or after device fabrication. Such a constraint evidently represents a problem when device fabrication by solution‐based processes, such as printing techniques, is envisioned. The aim of this short Review is to illustrate possible alternative strategies based on the development of organic semiconductors with higher dimensionality, capable to exhibit isotropic electronic properties.  相似文献   

7.
8.
9.
10.
11.
12.
The relative mobility of holes versus electrons in π‐conjugated materials is a long‐standing issue in the field of organic electronics. In this Progress Report, we first argue on the basis of theoretical considerations that in general organic semiconductors are intrinsically as good electron transporters as they are hole transporters. Then, in the light of selected experimental works, we discuss the origin of the features that prevent the observation of intrinsic electron transport, and the strategies that have been developed to promote ambipolar transport in field‐effect transistors.  相似文献   

13.
14.
Molecular engineering of tetraazapentacene with different numbers of fluorine and chlorine substituents fine‐tunes the frontier molecular orbitals, molecular vibrations, and π–π stacking for n‐type organic semiconductors. Among the six halogenated tetraazapentacenes studied herein, the tetrachloro derivative (4Cl‐TAP) in solution‐processed thin‐film transistors exhibits electron mobility of 14.9 ± 4.9 cm2 V?1 s?1 with a maximum value of 27.8 cm2 V?1 s?1, which sets a new record for n‐channel organic field‐effect transistors. Computational studies on the basis of crystal structures shed light on the structure–property relationships for organic semiconductors. First, chlorine substituents slightly decrease the reorganization energy of the tetraazapentacene whereas fluorine substituents increase the reorganization energy as a result of fine‐tuning molecular vibrations. Second, the electron transfer integral is very sensitive to subtle changes in the 2D π‐stacking with brickwork arrangement. The unprecedentedly high electron mobility of 4Cl‐TAP is attributed to the reduced reorganization energy and enhanced electron transfer integral as a result of modification of tetraazapentacene with four chlorine substituents.  相似文献   

15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号